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1. INTRODUCTION

Sample selection poses a fundamental challenge in empirical economics, threatening

the validity of research findings. When workers self-select into employment or patients

choose whether to seek medical care, the resulting datasets systematically exclude criti-

cal segments of the population, distorting our understanding of economic relationships and

leading to misguided policy prescriptions. Even carefully designed experiments are vulner-

able, as systematic attrition introduces selection bias that undermines randomization. While

economists have proposed various solutions, they often rely on strong assumptions or yield

uninformative bounds. In particular, nonparametric and semiparametric selection models

have long been thought to require exclusion restrictions, limiting their practical applica-

bility. This paper challenges that conventional wisdom by introducing a class of semipara-

metric selection models that achieve point identification without exclusion restrictions. We

further develop computationally tractable two-step plug-in estimators that can be readily

implemented using standard statistical software.

Heckman (1974, 1979) pioneered correction methods for selection bias using a paramet-

ric model that assumes linearity in both selection and outcome equations, along with joint

normality of the error terms:

Y ∗ = α+Xβ + V, D = 1[Zγ + ε≥ 0], Y =D · Y ∗, (1)

where Y ∗ is the latent outcome, X and Z are row vectors of exogenous covariates, V and

ε are mean-zero unobserved heterogeneity terms that are joint normally distributed and

independent of (X,Z), with V ar(ε) normalized to 1. Conditional on X = x, Z = z, and

D = 1, the mean of the observed outcome is given by:

E[Y |x, z,D = 1] = α+ xβ + σV εϕ(zγ)/Φ(zγ),

where σV ε = Cov(V, ε), and ϕ(·) and Φ(·) denote the standard normal probability density

function (p.d.f.) and cumulative distribution function (c.d.f.) respectively.

Although Heckman’s model can identify (α,β) when X = Z due to the known func-

tional form of selection bias, it is generally recommended to include at least one variable in
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Z that is excluded from X to strengthen identification. Without such an exclusion restric-

tion, the numerical performance of both the two-step and maximum likelihood estimators

can be poor, as highlighted in the debates in Duan et al. (1984), Manning et al. (1987), and

Hay and Olsen (1984).

By relaxing Heckman’s joint normality assumption, econometricians developed semi-

parametric approaches (Chamberlain, 1986, Ahn and Powell, 1993, Newey, 2009). Later

Das et al. (2003) explored fully nonparametric selection models:

Y ∗ =m(X) + V, D = 1[g(Z) + ε≥ 0], Y =D · Y ∗. (2)

In both semiparametric and nonparametric models, the exclusion restriction is widely re-

garded as essential for identification.1 However, finding an excluded variable is often in-

feasible in empirical applications. Motivated by this challenge, Lee (2009) proposed a

nonparametric bounds approach that does not require exclusion restrictions. By exploiting

the selection monotonicity assumption, under which individuals who are observed without

treatment would also be observed with treatment, Lee introduced a trimming procedure

to adjust for missing data due to selection. His approach (henceforth Lee bounds) is intu-

itive and easily implemented, making it widely used in empirical studies, particularly in

experiments where subjects tend to drop out.

Lee bounds, however, are often too wide to yield meaningful economic insights and its

ability to incorporate covariate information is limited.2 Honoré and Hu (2020) (henceforth

HH) later demonstrated that β is partially identified in (1) without distributional assump-

tions on (V, ε) and in the absence of exclusion restrictions. The HH model, serves as a

semiparametric alternative to Lee’s, provides tighter bounds than Lee bounds, as it imposes

1Lee (2009) stated that “standard parametric or semiparametric methods for correcting for sample selection

require exclusion restrictions that have little justification in this case” (p. 1072). Similarly, Honoré and Hu (2020)

claimed that an exclusion restriction is the key identifying assumption in semiparametric selection models.
2He proposes that weakly tighter bounds than the unconditional bounds can be obtained by averaging the group-

specific effects, weighted by covariate density. However, in practice, discretization is necessary for continuous

covariates, and handling a large number of covariates is often infeasible. Semenova (2023) generalizes Lee’s

approach to a high-dimensional setting.
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additional structural assumptions. Despite the growing popularity of partially identifying

models, estimating identified sets and conducting inference remain challenging, particu-

larly when the identified set is characterized by a large number of moment inequalities or

the distributions of unobserved heterogeneity lack parametric restrictions.

Motivated by these challenges, this paper investigates semiparametric selection models

that achieve point identification of β without any excluded variable. Specifically, we re-

lax the linear selection assumption in HH’s model, providing a middle ground between

Lee’s and HH’s approaches. Unlike Lee’s framework, our method does not impose se-

lection monotonicity, meaning it is not nested within Lee’s. We challenge the prevailing

belief that an exclusion restriction is necessary for semiparametric selection models. Our

approach establishes point identification of β under minimal assumptions without requiring

scale normalization or identification at infinity, when there exists at least one continuous

variable in X .

Our identification strategy leverages the nonlinearity of the conditional selection prob-

ability p0(X) := E[D|X], which is nonparametrically identified and easily verifiable in

practice. Consequently, β can be estimated via a partial linear regression, plugging in esti-

mates of p0(·) in the nonparametric components approximated by sieves, without needing

to estimate both p0(X) and E[Y |X] nonparametrically. Unlike many existing methods,

we do not assume unobserved heterogeneity is independent of regressors, allowing for

heteroskedasticity. We demonstrate that our estimators for β are
√
n-consistent, semipara-

metrically efficient under homoskedasticity, asymptotically normal, and computationally

scalable. When unobserved heterogeneity is heteroskedastic, robust standard errors can be

computed. As we maintain the linearity of the outcome equation, incorporating a large set

of covariates is straightforward. Our proposed two-step semiparametric estimator performs

exceptionally well in simulations and an empirical application on gender and racial wage

gaps in the United States (US).

We are not the first to consider nonlinearity in the selection process as a means to identify

the linear index parameters in the latent outcome equation. For instance, Ahn and Powell

(1993) and Newey and Powell (1993) speculated that nonlinearity can yield nonzero semi-
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parametric efficiency bounds, as the nonlinear terms in the selection equation may act as

excluded variables. In this paper, we formally establish the conditions which suffice to

identify the model parameters. More recently, Escanciano et al. (2016) introduced a more

general model, assuming E[Y |X] = F0(Xβ0, p0(X)), and demonstrated that β0 can be

identified up to scale if X contains at least two continuous variables and p0(X) is nonlin-

ear in X . They normalize one of the continuous variables’ coefficients to 1, as the scale

of β0 is not separately identified from F0. Unlike our proposed estimator, their approach

requires nonparametric estimation of both p0(X) and E[Y |X] even with linearity in the

outcome equation, adding to its complexity.

Pan et al. (2022) propose an integrated nonlinear least squares estimator (Chen, 2010a,b,

Chen and Zhou, 2011, 2012) for Escanciano et al. (2016)’s model, eliminating the need for

scale normalization. However, they do not provide an identification argument, as they as-

sume β0 is already identified. Moreover, their estimation procedure relies on multiple layers

of kernel regression, each requiring the selection of multiple tuning parameters, along with

numerical optimization of an integrated criterion function. This results in a computational

burden that scales exponentially with the sample size.

This paper is organized as follows. Section 2 introduces our semiparametric selection

model and establishes identification. Section 3 presents our estimators and derives their

asymptotic properties. Section 4 evaluates finite-sample performance of our estimator via

simulations. Section 5 applies our method to estimating gender and racial wage disparities

in the US. Section 6 concludes.

2. THE SEMIPARAMETRIC SELECTION MODEL

We consider a sample selection model where the selection procedure is left unspecified:

Y ∗ = α0 +Xβ0 + V, Y =D · Y ∗. (3)

Let p0(x) := P [D = 1|X = x] represent the conditional selection probability given X = x.

We impose the following assumption to identify β0 without invoking an exclusion restric-

tion.
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ASSUMPTION 1: (i) At least one variable (Xk) in X is continuously distributed; (ii)

p0(X) is continuously differentiable with respect toXk almost everywhere; (iii) ∂p0/∂xk ̸=
0 with probability 1; (iv) E[Y |X,D = 1] = Xβ0 + λ0(p0(X)); (v) λ0(p) is continuously

differentiable almost everywhere.

The above assumption requires a continuously distributed variable in X , the smoothness

of p0(·) and λ0(·). It also restricts the selection bias to only depend on the selection prob-

ability in a nonparametric form, λ0(·). Additionally, it rules out a flat region in p0(·). Our

model is implied by a special case where

D = 1[h0(X)− ε≥ 0], X ⊥⊥ (V, ε). (4)

Suppose ε is continuously distributed with the c.d.f. Fε(·). We can normalize the selection

process to D = 1[p0(X) ≥ U ], where p0(X) = Fε(h0(X)) and U = Fε(ε) ∼ Unif(0,1).

Unlike this special case, we do not impose the stochastic independence between X and

(V, ε). For some β and λ(·), define l(x) := (β0 − β)x and b(p) := λ0(p) − λ(p), both of

which are deviations of β and λ(p) from the truth. For any observationally equivalent β

and λ such that E[Y |X,D = 1] =Xβ + λ(p0(X)), l(x) + b(p) = 0 identically.

Under Assumption 1, β0 can be point identified. We cannot separately identify the inter-

cept α0 from the selection bias.3 Firstly, we consider the simplest case in which X consists

of only one continuous variable.

PROPOSITION 1: Let X be a scalar, nondegenerate, continuously distributed random

variable. Let Assumption 1 (ii)–(v) hold. If there exist two distinct values x′ and x′′ in the

support of X such that p0(x′) = p0(x
′′) = p′, β0 is identified and λ0 is identified up to an

additive constant.

3For point identification of the intercept α0, see Heckman (1990) and Andrews and Schafgans (1998). Unlike

our paper, both papers relies on the“identification at infinity” argument and an exclusion restriction.



SEMIPARAMETRIC SELECTION 7

PROOF: For any observational equivalent β and λ(·) and for both x′ and x′′, l(x′) +

b(p0(x
′)) = l(x′′) + b(p0(x

′′)) = 0. And therefore,

l(x′) + b(p′)− l(x′′)− b(p′) = (β0 − β)(x′ − x′′) = 0.

As we assume x′ ̸= x′′, β must be identical to β0 so that β0 is identified. Furthermore, by

continuous differentiability of p0(·) and λ0(·) (Assumption 1 (ii)–(iii)),

β0 − β +
∂b(p)

∂p

∂p

∂xk
=
∂b(p)

∂p

∂p

∂xk
= 0. (5)

By Assumption 1(iv), ∂p0/∂xk ̸= 0 and hence ∂b(p)/∂p= 0 implying that b(p) is constant

i.e., b(p) = C for an unknown constant C . This means λ0(p) = λ(p) + C so that λ0(·) is

identified up to a constant. Q.E.D.

This proposition shows that more than nonlinearity is required in the selection process,

as it rules out monotonicity of p0(·). Consider h0(·) in the special case described above.

If h0(·) = X + 0.5X2, β0 is not point identified. When X is binary, p0(X) = γ0 + γ1X

is fully nonparametric and therefore the parameters in the latent outcome equation are not

point identified as shown in HH.

Now we consider more general cases where X is multidimensional. Suppose two ele-

ments of X , Xk and Xj , are continuously distributed. The following proposition shows

that the model is point identifying.

PROPOSITION 2: Let Assumption 1 hold. Assume there exists another continuously dis-

tributed element Xj of X , such that p0(·) is continuously differentiable w.r.t. Xj and
∂p0
∂Xj

̸= 0 with probability 1. If ∂p0
∂Xk

̸∝ ∂p0
∂Xj

, β0 is identified and λ0 is identified up to a

constant.

PROOF: Partially differentiating l(x) + b(p) = 0 w.r.t. xk and xj yields

β0k − βk +
∂b(p)

∂p

∂p

∂xk
= 0, β0j − βj +

∂b(p)

∂p

∂p

∂xj
= 0. (6)
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This implies the following identity:

∂b(p)

∂p
=
βk − β0k
∂p/∂xk

=
βj − β0j
∂p/∂xj

⇒ βk − β0k
βj − β0j

=
∂p/∂xk
∂p/∂xj

. (7)

which only holds either ∂p/∂xk ∝ ∂p/∂xj or βk−β0k = βj−β0j = 0. Therefore, by ruling

out ∂p/∂xk ∝ ∂p/∂xj , we can conclude βk−β0k = βj −β0j = 0 so that ∂b(p)/∂p= 0. As

b(p) is constant, the whole parameter vector β0 is identified and λ0(·) is identified up to a

constant. Q.E.D.

In general, the marginal effect of xk on p is not proportional to that of xj . Identification

fails in the special case (4) when p0(X) = Fε(Xγ) because ∂p0/∂xk
∂p0/∂xj

= γkfε(Xγ)
γjfε(Xγ) = γk/γj

where Fε(·) and fε(·) are the c.d.f. and p.d.f. of ε. Therefore, the nonlinearity of p0(·)
enables us to identify the model parameters.

Lastly, we consider the case where Xk is the only continuous variable in X . Without

loss of generality, let Xj be a binary variable for all j ̸= k, as any discrete variable can be

equivalently expressed as a set of dummy variables.

PROPOSITION 3: Let Assumption 1 hold. For some Xj , let x′ be a vector where xj =

1, and let x′′ denote an otherwise identical vector where xj = 0. Further assume there

exists x′′′ an otherwise identical vector to x′ except xk such that p0(x′′′) = p0(x
′′). Unless

(x′k − x′′′k ) is constant for all values of x′k, β0 is identified and λ0 is identified up to a

constant.

PROOF: Let p′ and p′′ denote p0(x′) and p0(x′′) respectively. Then,

l(x′) + b(p′)− l(x′′)− b(p′′) = β0j − βj + b(p′)− b(p′′) = 0. (8)

Let p′′′ denote p0(x′′′). As p′′′ = p′′,

l(x′) + b(p′)− l(x′′′)− b(p′′′) = (β0k − βk)(x
′
k − x′′′k ) + b(p′)− b(p′′) = 0. (9)
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Combining (8) and (9) yields β0j−βj = (β0k−βk)(x′k−x′′′k ). By ruling out the possibility

that x′k − x′′′k is constant across all values of x′k, we can conclude that

β0k = βk, β0j = βj ,
∂b(p)

∂p
= 0.

Hence, β0 is identified and λ0 is identified up to a constant. Q.E.D.

Unless the required change in xk to achieve p′′ with xj = 0 from p′ with xj = 1

is constant for all values of x′k, the model parameters are identified. This proposition

rules out the case in which p0(X) = Fε(Xγ) because p′′ = Fε(x
′′γ) = Fε(x

′γ − γj) =

Fε

(
x′γ + (x′′′k − x′k)γk

)
and hence x′k − x′′′k = γj/γk for all x′k.

REMARK 1: (Parameter heterogeneity) We do not explicitly allow the parameters vary

across individuals. In applied studies, heterogeneous treatment effects are often concerned.

As briefly discussed in Honoré and Hu (2024), it is straightforward to extend our results to

allow for treatment heterogeneity. Modifying the model (3) as:

Y ∗
i = αi +Xiβi + Vi, Yi =Di · Y ∗

i , pi =E[Di|Xi], (10)

We allow the parameter vector βi to be individual-specific. If we assume (αi, βi) ⊥⊥
(Xi,Di, Vi) following Honoré and Hu (2024), we yield

E[Yi|Di = 1,Xi] =E[αi] +XiE[βi] + λ∗(pi).

Therefore, under parameter heterogeneity, our model (3) identifies E[βi] and λ(·) :=
λ∗(·) +E[αi].

The identification results in this section show that our semiparametric selection model

can point identify the model parameters without an excluded variable as long as there is at

least one continuously distributed covariate. In applied economic studies, continuous vari-

ables such as age, income, and price are not uncommon. Hence, our semiparametric model

can be quite generally applicable to many modern data sets. Furthermore, it is natural that

the true selection process exhibit some degree of nonlinearity. As the conditional selection
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probability is nonparametrically identified, it is simple to check the nonlinearity in the se-

lection probability. When there exists strong empirical evidence of selection nonlinearity,

our model becomes a strong alternative to the HH’s model, as our model is more robust and

point-identifying.

3. THE ESTIMATORS

Given the identification results, we now propose a class of tractable two-step plug-in

semiparametric estimators. We first begin by demonstrating that these estimators are consis-

tent, semiparametrically efficient, and asymptotically normal when the individual selection

probability, pi = p0 (Xi) = E [Di|Xi], is observed. Subsequently, we prove that replacing

pi with p̂i, a consistent estimator of pi, does not affect the asymptotic behavior of our esti-

mators when p̂i converges to pi at a sufficiently fast rate as n→∞. Then we describe how

the estimator can be practically implemented.

3.1. When pi is known

Suppose we have an i.i.d. sample, {Wi}ni=1, where Wi := (Yi,Di,Xi, pi). As pi is ob-

served, the model parameters θ0 = (β0, λ0) ∈ Θ := B × Λ can be estimated by the least

squares (LS) procedure:

θ̃n =
(
β̃n, λ̃n

)
= argmin

(β,λ)∈B×Λ

1

n

n∑
i=1

Di

(
Yi −X ′

iβ − λ (pi)
)2
.

As λ is infinite-dimensional, we approximate the unknown function λ ∈ Λ by sieves, λn ∈
Λn, where Λn is an approximating function space (such as polynomials, trigonometric

polynomials, splines, and orthogonal wavelets) that becomes dense in Λ as n→∞.

Let Λn =
{
λn (·) =RK(n) (·)

′ γ : γ ∈RK(n)
}

, where RK(n) =
[
r1 (·) , . . . , rK(n) (·)

]′
denote a vector of basis functions. Let Θn = B × Λn be the sieve space for θ = (β,λ (·))
and K̄ (n) = dim(β) +K (n). For notational simplicity, we omit the subscript K (n) and

write RK(n) (·) =R (·). Define

D = diag (D1, . . . ,Dn) , X = [X1, . . . ,Xn]
′ , y = (Y1, . . . , Yn)

′ , p0 = (p1, · · · , pn)′,
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For an arbitrary vector p̃ := (p̃1, · · · , p̃n) where p̃i ∈ [0,1], defineR (p̃) =D [R (p̃1) , . . . ,R (p̃n)]
′,

and Q (p̃) =R (p̃)
(
R (p̃)′R (p̃)

)−1
R (p̃)′. Then the LS estimator of β is written as:

β̃n =
(
(DX)′ (I −Q (p0)) (DX)/n

)−1
(DX)′ (I −Q (p0)) (Dy)/n.

We establish asymptotic properties of our sieve LS (SLS) estimator using the results in

Chen (2007). Let Θ be equipped with a norm ∥θ∥s = |β|e + ∥λ∥∞, where |·|e denotes the

Euclidean norm and ∥λ∥∞ = supp∈[0,1] |λ (p)| is the supremum norm. We introduce the

Hölder class of functions. Let [m] be the largest nonnegative integer such that [m]<m. A

real-valued function λ on [0,1] is said to be in the Hölder space Λm ([0,1]) if it is [m] times

continuously differentiable on [0,1] and

max
ℓ≤[m]

sup
p

∣∣∣∣∣∂ℓλ (p)∂pℓ

∣∣∣∣∣+ sup
p,p′

∣∣∣∣∣∂[m]λ (p)

∂p[m]
−
∂[m]λ

(
p′
)

∂p[m]

∣∣∣∣∣/ ∣∣p− p′
∣∣m−[m]

is finite. We impose the following conditions to derive asymptotic properties of the SLS

estimator.

ASSUMPTION 2: (i) {Wi}ni=1 are i.i.d.; (ii) the support of Xi, X , is compact; (iii) the

density of pi is bounded and bounded away from zero on the compact subset of [0,1] .

ASSUMPTION 3: (i) λ ∈ Λm ([0,1]) with m > 1/2; (ii) ∀λ ∈ Λm ([0,1]) ,∃λn (p;γ) ∈
Λn such that ∥λn − λ∥∞ =O

(
K (n)−m

)
with K (n) =O

(
n1/(2m+1)

)
.

ASSUMPTION 4: σ20 (Xi,Di) := E
[
Di (Yi −X ′

iβ0 − λ0 (pi))
2 |Xi = x,Di = 1

]
are pos-

itive and bounded uniformly over x ∈ X .

ASSUMPTION 5: Θ := B ×Λ is compact under ∥·∥s.

Under these regularity conditions, the consistency of the estimator is obtained by Proposi-

tion 3.3 of Chen (2007) as ∥θ̃n − θ0∥=Op

(
n−m/(2m+1)

)
.

We now show that the parametric components of the SLS estimator, β̃n, is asymptotically

normal. Let X̃i =DiXi −E [DiXi|pi,Di = 1].
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ASSUMPTION 6: (i) E
[
X̃ ′

iX̃i

]
is positive definite; (ii) each element of E [DiXi|pi,Di = 1]

belongs to the Hölder space Λmj ([0,1]) with mj > 1/2 for j = 1, . . . , dim(β).

ASSUMPTION 7: β0 ∈ int (B).

Assumption 6(i) is satisfied when β0 and λ0 are identified. Applying Proposition 4.5 of

Chen (2007), we obtain the following asymptotic normality of β̃n.

PROPOSITION 4: Let Assumptions 2–7 hold. Then,

√
n(β̃n − β0)→d N

(
0,E

[
X̃ ′

iX̃i

]−1
E
[
σ20 (Xi,Di) X̃

′
iX̃i

]
E
[
X̃ ′

iX̃i

]−1
)
.

If the error term is homoskedastic i.e., σ0(Xi,Di) is constant, the SLS estimator β̃n is

semiparametrically efficient. When the error term exhibits heteroskedasticity, efficient es-

timation can be achieved through the sieve generalized least squares (SGLS) estimator.

However, in applied economic studies, the standard practice is to report heteroskedasticity-

robust standard errors rather than employing the GLS approach. Consequently, in our simu-

lations and empirical applications, we proceed with robust standard errors calculated using

the asymptotic variance formula reported in Proposition 4.

3.2. When pi is replaced by p̂i

As pi is never observed in practice, β̃n is an infeasible estimator. Suppose pi is con-

sistently estimated by an estimator p̂i := p̂n (Xi) = p0 (Xi) + Op(n
−1/3). Define p̂ =

(p̂1, · · · , p̂n)′. Replacing p0 with p̂ in β̃n, we yield the following feasible estimator:

β̂n =
(
(DX)′ (I −Q (p̂)) (DX)/n

)−1
(DX)′ (I −Q (p̂)) (Dy)/n.

We will show that β̂n and β̃n have the same asymptotic distribution by leveraging the results

in Song (2012, 2014). Define

b̂n =
[
(DX)′ (Dy)/n; (DX)′ (DX)/n

]
,

ân (p̃) =
[
(DX)′Q (p̃) (Dy)/n; (DX)′Q (p̃) (DX)/n

]
.
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Let dX denote dim(X) and define H (a, b) = (b2 − a2)
−1 (b1 − a1) where a2 and b2 are the

right dX × dX subblocks, and a1 and b1 are the left dX × 1 subblocks of a and b. Then,

we can write ∥β̂n − β̃n∥ as ∥H
(
ân (p̂) , b̂n

)
−H

(
ân (p0) , b̂n

)
∥. From the continuously

differentiability of H , we have

∥H
(
ân (p̂) , b̂n

)
−H

(
ân (p0) , b̂n

)
∥ ≤C∥ân (p̂)− ân (p0)∥+ op (∥ân (p̂)− ân (p0)∥) .

For the RHS of the above inequality, observe that

ân (p̂)− ân (p0) = ân (p̂)− a0 (p̂)︸ ︷︷ ︸
:=An(p̂)

−{ân (p0)− a0 (p0)}︸ ︷︷ ︸
:=An(p0)

+a0 (p̂)− a0 (p0)︸ ︷︷ ︸
:=Bn

, (11)

where a0 (p) := E [DiXiE [Zi|pi,Di = 1]] with Zi = [Yi;Xi].

As ∥p̂− p0∥= op (1), An(p̂) and An(p0) in (11) can be shown to be Op

(
n−1/2

)
. First,

we observe that

An (p̃) =
1

n

n∑
i=1

DiXi

[
DiR (p̃i)

(
R (p̃)′R (p̃)

)−1
R (p̃)′DZ −DiE [Zi|p̃i,Di = 1]

]

+
1

n

n∑
i=1

{DiXiE [Zi|p̃i,Di = 1]−E [DiXiE [Zi|p̃i,Di = 1]]} .

(12)

We obtain the asymptotic linear representation of
√
nAn (p̃) as follows:

√
nAn (p̃) =

1√
n

n∑
i=1

ψi (p̃) + op (1) , (13)

for some i.i.d. ψi (·) such that E[ψi (p̃)] = 0, where op (1) is uniform local around p0. Then,

applying the maximal inequality yields the stochastic equicontinuity of An(·) as shown in

Andrews (1994). By Lemma B3 in Song (2014), we rewrite the first element of the RHS of

(12) to:

1

n

n∑
i=1

DiE [Xi|p̃i,Di = 1] (Zi −E [Zi|p̃i,Di = 1]) + op

(
n−1/2

)
,
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uniformly over p̃ ∈B (p0; cn) := {p̃ : ∥p̃− p0∥< cn}, which implies that
√
nAn (p̃) is, uni-

formly over p ∈B (p0; cn), equal to

1√
n

n∑
i=1

DiE [Xi|p̃i,Di = 1] (Zi −E [Zi|p̃i,Di = 1])

+
1√
n

n∑
i=1

{DiXiE [Zi|p̃i,Di = 1]−E [DiXiE [Zi|p̃i,Di = 1]]}+ op (1) .

From this uniform linear representation, we have supp̃∈B(p0;cn) |
√
nAn (p̃)| = Op (1),

which means that both An(p̂) and An(p0) are Op(n
−1/2). Furthermore, we have

√
n (An (p̂)−An (p0)) =

1√
n

n∑
i=1

[ψi (p̃)− ψi (p0)] + op (1) , (14)

whose asymptotic variance, E
[
(ψi (p̃)− ψi (p0))

2
]
, goes to 0 as p̃→ p0 under minor reg-

ularity conditions for ψi (p̃). This result also works when p̃ = p̂ as shown in Lemma 1

provided in the appendix. Hence we conclude An (p̂)−An (p0) = op

(
n−1/2

)
as p̂→ p0.

Lastly, we show that the term Bn in (11) is also op(n−1/2). We extend Song (2014)’s

results, which are derived under the linear selection procedure, to the cases with nonlinear,

possibly nonmonotone selection. Under regularity conditions, the function a0 (p̃) is suffi-

ciently smooth in p̃ around p0 so that there exist constants C > 0 and ε ∈ (0,1/2] such that

for each η ∈ (0, ε],

sup
p̃∈B(p0;η)

∥a0 (p̃)− a0 (p0)∥ ≤Cη2. (15)

The formal proof of (15) is provided in Lemma 2 in the appendix. Hence, ∥a0 (p̂) −
a0 (p0)∥=Op

(
η2n
)

if ∥p̂−p0∥ ≤ ηn. As we consider p̂ converging to p0 at a cube-root rate,

we obtain ∥a0 (p̂)−a0 (p0)∥= op

(
n−1/2

)
by taking ηn = n−1/3 logn. This concludes that

∥β̂n − β̃n∥ = op

(
n−1/2

)
, which implies that β̂n and β̃n have the same asymptotic distri-

bution.
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3.3. Practical implementations

Given the asymptotic results, one can consider a wide range of estimators in the first

stage estimation of pi = P [Di = 1|Xi]. Any consistent nonparametric estimator p̂n(·) that

converges to p0 at a cube-root rate or faster can be employed. The convergence rate of

the first stage estimation depends on the smoothness of p0 and the number of continuous

elements in Xi, denoted as dc. With a relatively low dc, it is quite feasible that standard

kernel or sieve estimators converge faster than the n−1/3 rate. In a high-dimensional setting,

a high level of smoothness for p0 is necessary to ensure a sufficiently fast rate. Recall

that m denotes the Hölder smoothness of p0. The rate condition is satisfied when m> dc.

Suppose that the true selection process is Di = 1[gk(Xi)≥ Ui] where gk(·) is a k-th order

polynomial of Xi and Ui is continuously distributed with the c.d.f. FU (·) which belongs

to a smooth parametric class. Consequently, p0(Xi) = FU (gk(Xi)) and p0(·) is infinitely

continuously differentiable, implying m =∞. Therefore, if one would like to impose the

selection procedure outlined above, standard kernel or sieve methods can be employed with

a high dc. Alternatively, additional structural restrictions can be imposed, such as additivity,

i.e. p0(X1i,X2i) = p10(X1i) + p20(X2i).

In practical implementation, we propose the following simple two-step procedure.

• Step 1: using the full sample, estimate pi using an appropriate nonparametric estimator

and obtain the fitted values p̂i.

• Step 2: conditional on Di = 1, estimate β0 and λ0 using the SLS estimator.

In the simulations and empirical studies conducted in this paper, we employ the sieve max-

imum likelihood estimator in Step 1, using piecewise polynomial basis functions. In Step

2, we regress Yi on Xi and piecewise polynomial transformations of p̂i using ordinary least

squares (OLS). The OLS standard errors of β̂ provided in standard statistical programs

such as Stata, R, and Matlab are asymptotically valid standard errors under homoskedastic-

ity. In practice, researchers often desire heteroskedasticity-robust or cluster-robust standard

errors. The same ’sandwich’ formula can be used to compute robust standard errors. There-

fore, the two-step procedure outlined here can be readily utilized in any statistical software
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without necessitating a new implementation package, which makes our proposal particu-

larly attractive to applied researchers.

REMARK 2: (Nonlinearity test) Nonlinearity in the first stage can be empirically tested.

When sieve MLE is employed in the first stage Yi = 1
[
g(Xi) + Ui > 0

]
where g(Xi) is

approximated by
∑K

k=1 γk ϕk(Xi), significant coefficients of high-order sieve terms imply

nonlinearity. Alternatively, one can also consider linear index specifications such as probit

and logit. Let llin and lsieve denote maximized log likelihoods of linear index and sieve-

based models respectively. Under the null hypothesis H0 : g(X) =X ′β, the distribution of

lLR = 2(lsieve − llin) is asymptotically χ2K−dX
(assuming K is fixed). Reject H0 (and thus

reject linearity) if lLR > χ2K−dX , α where χ2K−dX , α is the critical value of the chi-square

distribution with K − dX degrees of freedom at the significance level α.

4. SIMULATIONS

In this section, we evaluate the finite sample performances of our semiparametric es-

timator using known data-generating processes (DGPs). For each DGP, we repeat 1,000

iterations in each of which we draw a Monte Carlo sample of size n = 5,000. We first

investigate the single-covariate case using the following DGP:

Y =D · (β0 +X1β1 + 2 · V ) , D = 1[α0 + α1X + α2X
2 + α3X

3 +U ≥ 0], (16)

X1 ∼N(0,1),

V
U

 |X1 ∼N

0
0

 ,
 1 0.75

0.75 1

 . (17)

In this instance, β0 is not separately identified from E[V |X,D = 1] = λ0(p0). The identifi-

cation of β1 is contingent upon the parameter values α = (α0, α1, α2, α3). This is because

the conditional selection probability p0(X) =E[D|X] must not exhibit strict monotonicity.

We employ the proposed two-step sieve-based approach to estimate the model. For alter-

native estimators, we consider the ordinary least squares (OLS) estimator conditional on

selection (D = 1) assuming random selection, which is commonly referred to as the two-

part model (TPM), and the maximum likelihood estimator under the Heckman selection

model (HSM), both of which are misspecified. We also compare our estimator to the oracle
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estimator, which incorporates the true functional form of p0(X) given the selection bias is

expressed using the inverse Mills ratio.4

We consider two selection designs: (a) α = (0.6,1.50,−0.5,−0.05) and (b) α =

(0.4,1.50,0.2,0.05). In both designs, the parameter values are chosen to ensure that the

selection probability, P (D = 1), is approximately 60%. Let h(X) := α0+α1X +α2X
2+

α3X
3 be the selection index. The shape of h is displayed in Figure 1 and the performances

of estimators are reported in Table I and Figure 2. Under design (a), h(·) is not monotone,

so our two-step sieve estimator for β1 is well centered around the true value. Its root-mean-

squared error (RMSE) is close to that of the oracle estimator. Conversely, with design (b),

β1 remains unidentified so it suffers from a large RMSE as expected. In both designs, the

OLS exhibits substantial misspecification bias. The Heckman’s MLE performs poorly in

the non-monotone design due to misspecification but performs very well in the monotone

design. This is because the selection index is close to linear in the effective support of X

and the error distribution is correctly specified in the monotone design.

TABLE I

FINITE SAMPLE PERFORMANCES OF ESTIMATORS (SINGLE COVARIATE CASE)

Non-monotone selection Monotone selection

TPM HSM Kim&Lee Oracle TPM HSM Kim&Lee Oracle

RMSE 0.524 0.109 0.083 0.071 0.693 0.059 0.354 0.096

Bias -0.522 0.092 -0.001 -0.004 -0.692 -0.015 -0.001 -0.003

We next generate Monte Carlo samples from the following DGP (referred to as DGP1

henceforth), where X consists of two continuously distributed variables and the unobserv-

ables are joint normally distributed as (17):

Y =D · (β0 +X1β1 +X2β2 + 2 · V ) , (18)

D = 1[α0 + α1X1 + α2X
2
1 + α3X

3
1 + α4X1X2 + α5X2 + α6X

2
2 +U ≥ 0]. (19)

4In the oracle estimation, we first estimate α using probit regression of D on Z = (1,X1,X
2
1 ,X

3
1 ). Subse-

quently, we employ λ0(p̂0(Z)) = ϕ(Zα̂)/Φ(Zα̂) to correct the selection bias.
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FIGURE 1.—Selection index designs
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(b) Monotone selection

FIGURE 2.—Finite sample performances of Estimators: Single covariate case

Note: This figure shows a box plot for each parameter estimator. The main rectangular box shows the interquartile range (IQR).

The thick line inside the box represents the median. Whiskers reach to the furthest data points within 1.5× IQR. Dots beyond the

whiskers are potential outliers. The red horizontal line indicates the true parameter value.
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X1 and X2 are drawn from the standard normal distribution and independent of each other.

The parameter values are set as:

α= (1.5,0.5,−0.5,0.2,0.5,1.0,−0.5), β = (0.5,0.5,0.25).

The average selection probability across Monte Carlo samples is 52%.

In the latest design (DGP2 henceforth), we consider the scenario where X con-

sists of a continuously distributed variable, X1 ∼ N(0,1), and a binary variable, X2 ∼
Bernoulli(0.5). The remaining elements of DGP2 are otherwise identical to DGP1 except

the selection process:

D = 1[α0 + α1X1 + α2X
2
1 + α3X

3
1 + α4X1X2 + α5X2 + α6X

2
1X2 + α7X

3
1X2 +U ≥ 0].

The parameter values are set as:

α= (0.2,−0.2,−0.5,0.3,0.1,0.5,−0.3,0.2), β = (0.5,0.5,0.25).

The average selection probability is 66% under this DGP.

In both DGPs, we have at least one continuous covariate and the selection probability

function p0(·) exhibits sufficient nonlinearity, so our model point identifies β1 and β2. As

showcased in Figures 3-4, the TPM and the Heckman selection model are misspecified and

hence the OLS and MLE suffer from large bias for both DGPs. Table II displays the RMSE

and mean bias of each estimator. Heckman’s MLE works particularly badly in DGP2. In

contrast, our semiparametric estimator performs exceptionally well in DGP1 for both pa-

rameters as the oracle estimator outperforms our estimator by a very slight margin in terms

of root-mean-squared errors (RMSE) and mean bias. In DGP2, it performs similarly to the

oracle estimator for β1, but shows a larger RMSE (0.130) than the oracle estimator (0.085)

for β2, possibly due to limited variations in X2.

Finally, we evaluate the performance of Lee (2009)’s and Honoré and Hu (2020)’s

bounds approaches using DGP2. We do not consider DGP1 because there is no binary

treatment variable for which Lee’s bounds are applicable. We use a sample size of 100,000

instead of 5,000, which we use for point estimators. This is because the HH bounds are
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FIGURE 3.—Comparison of Estimators: DGP1 (selection probability = 0.52)
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FIGURE 4.—Comparison of Estimators: DGP2 (selection probability = 0.66)

Note: This figure shows a box plot for each parameter estimator. The main rectangular box shows the interquartile range (IQR).

The thick line inside the box represents the median. Whiskers reach to the furthest data points within 1.5× IQR. Dots beyond the

whiskers are potential outliers. The red horizontal line indicates the true parameter value.

not reliably estimated with a moderate sample size, with which the bounds are often empty

(in 93 iterations out of 1,000) or uninformative (including zero within the bounds in 615

iterations out of 1,000). With the 100,000 sample size, both bounds are reliably estimated.
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TABLE II

FINITE SAMPLE PERFORMANCES OF ESTIMATORS

DGP1 DGP2

TPM HSM Kim&Lee Oracle TPM HSM Kim&Lee Oracle

RMSE
β1 0.255 0.100 0.060 0.045 0.153 0.224 0.056 0.047

β2 0.321 0.065 0.063 0.051 0.393 0.383 0.130 0.085

Bias
β1 -0.252 0.088 -0.001 -0.003 -0.148 -0.078 0.002 -0.003

β2 -0.318 0.038 -0.002 -0.003 -0.388 -0.318 -0.008 -0.004

Figure 5 displays the box plots of HH’s and Lee’s bounds. It is not surprising to observe

that the Lee bounds consistently contain the true parameter value for β2 because the bounds

are very wide in this setup. The Lee bounds are never informative about the sign of the

treatment effect as they include zero in every simulation under DGP2. In contrast, the HH

bounds are significantly tighter than the Lee bounds. However, in most iterations, the HH

bounds are not informative and never contain the true value because the model misspecifies

the selection process.
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Method
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FIGURE 5.—Honore and Hu (HH) bounds and Lee bounds on DGP2 (n= 100,000)
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These simulation exercises clearly demonstrate the practical usefulness of our semipara-

metric estimator. When at least one continuous covariate is present and the selection process

exhibits nonlinearity, our estimator performs exceptionally well even with a modest sam-

ple size. The first-stage selection procedure is nonparametrically identified so assessing

the nonlinearity in the selection equation is practically easy. In contrast to HH’s partially

identifying linear selection model, our semiparametric model offers greater flexibility by

not imposing linearity in the first stage while still point-identifying the parameters of inter-

est. Consequently, our estimator can serve as a valuable alternative when the Lee bounds

are excessively wide to provide meaningful insights. However, if there is no continuous

variable or the selection process is genuinely linear, the HH bounds would be an excellent

alternative to the Lee bounds.

5. EMPIRICAL APPLICATION: GENDER AND RACIAL WAGE GAPS IN THE US

We now demonstrate the empirical usefulness of our semiparametric model and its es-

timator using real-world data. We estimate the gender and racial wage disparities in the

US. The reservation wage varies between different genders and ethnicities. Upon selection

into employment, the distribution of unobserved factors can differ from that of the unem-

ployed. Therefore, the effect of sample selection on observed wages should be taken into

account to accurately calculate wage gaps. Following Mora (2008) and Honoré and Hu

(2020) where they focus on racial wage gaps, we analyze Current Population Survey (CPS)

data on wages from Arizona, California, New Mexico, and Texas. The data set covers the

years 2003–2016 and includes 129,907 women. Among them, 26,698 are third-generation

Mexican-Americans, while 103,209 are non-Hispanic whites. The remaining 118,418 men

comprise 21,402 third-generation Mexican-Americans and 97,016 non-Hispanic whites.

All individuals in the sample are aged between 25 and 62. In terms of employment, the

percentage of women working is 64% for third-generation Mexican-Americans and 61%

for non-Hispanic whites. The employment rates for men are 71% for Mexican-Americans

and 67% for non-Hispanic whites, respectively.

The gender wage gap is estimated for Mexican-Americans and non-Hispanic whites sep-

arately to nonparametrically control for ethnicity. We use the log inflation-adjusted hourly
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wage as the outcome variable. In the latent outcome equation, we estimate the coefficient

on the female dummy with age, age squared, experience, experience squared, education

dummies (less than high school, some college, college, and advanced degree such as mas-

ter’s and doctorate, with high school as the base category), dummies for being a veteran and

being married, state dummies (New Mexico as a base state), and year dummies as control

variables. Age and experience serve as continuously distributed covariates in the selection

equation for our semiparametric model. For the racial wage gap, we estimate the coefficient

on the Mexican-American dummy with the same set of control variables separately for men

and women.

We first estimate the Lee and HH bounds. As the Lee bounds are fully nonparametric,

we compute the bounds conditional on the education level (high school and college) with

no other covariates. For the HH bounds, we use the full set of control variables. We closely

follow Honoré and Hu (2020)’s implementation except that we employ probit regression

in the first stage estimation of selection parameters in lieu of logit. The results are still

very similar to the original results of HH with the logit first stage. Table III presents the

estimated bounds. For the racial wage disparities, the Lee bounds are not informative for

college graduates, as they contain zero. For high school graduates, the bounds range from

-25% to -7.5% for men and from -21% to -4.1% for women. In contrast, the HH bounds are

highly informative and significantly narrower than the Lee bounds. The HH bounds range

between -11.4% and -10.3% for men and between -8.9% and -6.6% for women. Regarding

the gender wage gap, the Lee bounds suggest substantially lower wages for females, ceteris

paribus. The bounds are wider for high school graduates (-32.5% to -10.5% for Mexican-

Americans and -37.2% to -14.2% for whites). For college graduates, the bounds lie between

-24.0% and -15.2% for Mexican-Americans, and between -28.4% and -11.9% for whites,

indicating a potentially smaller gender wage gap among college graduates. The HH bounds

for the gender wage gaps (-21.9% to -14.4% for Mexican-Americans and -22% to 17% for

whites) are narrower than the Lee bounds but not as tight as for the racial gaps.

For point estimators, like in the simulation experiments, we consider the two-part model

(“TPM”) using the OLS conditional on employment assuming random selection, the Heck-
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TABLE III

ESTIMATED LEE (2009) AND HH (2020) BOUNDS FOR RACIAL AND GENDER WAGE GAPS

Source Category Racial Gap Category Gender Gap

Lee

Men, Highschool [-0.249, -0.074] Mexican, Highschool [-0.325, -0.105]

Women, Highschool [-0.210, -0.041] White, Highschool [-0.372, -0.142]

Men, College [-0.205, 0.015] Mexican, College [-0.240, -0.152]

Women, College [-0.235, 0.035] White, College [-0.284, -0.119]

HH
Men [-0.114, -0.103] Mexican [-0.219, -0.144]

Women [-0.089, -0.066] White [-0.220, -0.170]

man selection two-step estimator (“HS 2step”) and MLE (“HS MLE”), and our proposed

semiparametric two -step estimator (“KL”). In the first stage estimation for the selection

probability, we employ the sieve maximum likelihood estimator and predict p̂0(·), by in-

cluding piecewise-polynomial (cubic b-spline) basis functions of age and experience with

5 knots, and their interactions with dummy variables. Most coefficients on sieve terms in

the first stage estimation are highly significant across all the subsamples, indicating strong

nonlinearity in the selection process. Given the prediction for the selection probability, p̂i,

from the first stage, we estimate a partial linear model where the bias correction term λ(·)
is approximated by cubic b-spline basis functions with 7 knots.

The estimation results are shown in Table IV for the racial wage gaps. It is surprising

that the OLS assuming random selection and the Heckman selection approach using the

MLE produce the same estimate of the racial wage gap for both men (-11.3%) and women

(-7.8%). The Heckman two-step estimator, on the other hand, gives quite different results

from the OLS and Heckit MLE with inflated standard errors. As it does not exploit the

full information in the model, the two-step estimator tend to be less reliable. The OLS and

Heckman MLE generally produce almost identical coefficient estimates for all covariates.

In Heckman’s approach, the null hypothesis of no correlation between the error terms can-

not be rejected. Both OLS and Heckman MLE estimates are contained in the HH bounds,

meaning that the linear selection models fail to capture any selection bias. As we can see in

the first stage estimation, linearity of the selection process is strongly rejected, so the linear
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TABLE IV

WAGE REGRESSION AND RACIAL WAGE DISPARITY

Men Women

TPM HS 2step HS MLE KL TPM HS 2step HS MLE KL

mexican
-0.113

(0.005)

-0.084

(0.012)

-0.113

(0.005)

-0.087

(0.009)

-0.078

(0.005)

-0.013

(0.017)

-0.078

(0.005)

-0.065

(0.007)

age
0.078

(0.006)

0.112

(0.014)

0.079

(0.006)

0.108

(0.010)

0.111

(0.007)

0.213

(0.026)

0.113

(0.007)

0.133

(0.009)

age2
0.000

(0.000)

-0.001

(0.000)

0.000

(0.000)

-0.001

(0.000)

0.000

(0.000)

-0.001

(0.000)

0.000

(0.000)

-0.001

(0.000)

exp
-0.025

(0.005)

-0.045

(0.009)

-0.025

(0.005)

-0.043

(0.007)

-0.069

(0.006)

-0.127

(0.016)

-0.070

(0.006)

-0.082

(0.007)

exp2
0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

less than hs
-0.169

(0.012)

-0.222

(0.023)

-0.170

(0.012)

-0.217

(0.016)

-0.174

(0.014)

-0.372

(0.050)

-0.177

(0.015)

-0.227

(0.017)

some college
0.052

(0.009)

0.043

(0.011)

0.051

(0.009)

0.045

(0.010)

0.033

(0.011)

0.017

(0.014)

0.033

(0.011)

0.027

(0.011)

college
0.235

(0.022)

0.205

(0.026)

0.235

(0.023)

0.210

(0.023)

0.156

(0.025)

0.084

(0.036)

0.155

(0.025)

0.134

(0.026)

adv degrees
0.258

(0.031)

0.194

(0.041)

0.257

(0.031)

0.205

(0.034)

0.200

(0.034)

0.113

(0.047)

0.199

(0.034)

0.173

(0.035)

veteran
-0.001

(0.006)

0.015

(0.008)

-0.001

(0.006)

0.013

(0.007)

0.030

(0.016)

0.037

(0.020)

0.030

(0.016)

0.032

(0.016)

married
0.135

(0.004)

0.185

(0.019)

0.136

(0.005)

0.178

(0.012)

0.034

(0.004)

-0.079

(0.028)

0.033

(0.005)

0.010

(0.007)

california
0.151

(0.007)

0.140

(0.009)

0.151

(0.007)

0.141

(0.008)

0.204

(0.007)

0.178

(0.011)

0.204

(0.007)

0.199

(0.008)

arizona
0.042

(0.009)

0.052

(0.010)

0.042

(0.009)

0.050

(0.009)

0.098

(0.009)

0.103

(0.012)

0.098

(0.009)

0.099

(0.009)

texas
0.015

(0.007)

0.045

(0.014)

0.015

(0.008)

0.041

(0.010)

0.030

(0.008)

0.064

(0.013)

0.031

(0.008)

0.038

(0.008)

Note: The values in parentheses are standard errors.
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TABLE V

WAGE REGRESSION AND GENDER WAGE DISPARITY

Mexican White

TPM HS 2step HS MLE KL TPM HS 2step HS MLE KL

female
-0.193

(0.006)

-0.215

(0.028)

-0.195

(0.007)

-0.179

(0.012)

-0.209

(0.003)

-0.186

(0.016)

-0.159

(0.004)

-0.211

(0.004)

age
0.056

(0.009)

0.075

(0.025)

0.058

(0.010)

0.044

(0.013)

0.103

(0.006)

0.077

(0.019)

0.045

(0.006)

0.107

(0.006)

age2
0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

-0.001

(0.000)

0.000

(0.000)

0.000

(0.000)

-0.001

(0.000)

exp
-0.019

(0.007)

-0.029

(0.014)

-0.020

(0.007)

-0.013

(0.008)

-0.053

(0.005)

-0.037

(0.012)

-0.019

(0.005)

-0.056

(0.005)

exp2
0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

0.000

(0.000)

less than hs
-0.186

(0.014)

-0.216

(0.040)

-0.188

(0.015)

-0.168

(0.019)

-0.159

(0.012)

-0.108

(0.037)

-0.042

(0.013)

-0.166

(0.013)

some college
0.078

(0.012)

0.079

(0.012)

0.078

(0.012)

0.075

(0.013)

0.033

(0.009)

0.039

(0.010)

0.047

(0.010)

0.030

(0.009)

college
0.323

(0.029)

0.315

(0.031)

0.323

(0.029)

0.316

(0.030)

0.171

(0.021)

0.192

(0.026)

0.217

(0.023)

0.165

(0.021)

adv degrees
0.408

(0.040)

0.388

(0.047)

0.406

(0.040)

0.404

(0.041)

0.201

(0.029)

0.234

(0.037)

0.268

(0.032)

0.194

(0.029)

vetetran
0.069

(0.013)

0.059

(0.018)

0.068

(0.013)

0.076

(0.014)

0.000

(0.006)

-0.010

(0.010)

-0.024

(0.007)

0.002

(0.006)

married
0.095

(0.006)

0.100

(0.009)

0.095

(0.006)

0.091

(0.007)

0.081

(0.003)

0.089

(0.007)

0.097

(0.004)

0.081

(0.003)

california
0.147

(0.012)

0.149

(0.012)

0.147

(0.012)

0.146

(0.012)

0.185

(0.006)

0.196

(0.010)

0.209

(0.007)

0.185

(0.006)

arizona
0.052

(0.015)

0.060

(0.018)

0.053

(0.015)

0.047

(0.016)

0.074

(0.007)

0.072

(0.008)

0.066

(0.008)

0.074

(0.007)

texas
-0.029

(0.012)

-0.016

(0.021)

-0.028

(0.012)

-0.039

(0.014)

0.035

(0.006)

0.021

(0.012)

0.001

(0.007)

0.037

(0.006)

Note: The values in parentheses are standard errors.
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selection models are misspecified regardless of the assumption on the error terms. On the

contrary, our semiparametric estimator shows a smaller magnitude of the racial wage dis-

parity which is outside the HH bounds for both (-8.7%) men and women (-6.5%). Figure

6(a)-(b) compares our point estimates with the bounds estimates.

Our estimator also corrects selection bias in the coefficient estimates for the other co-

variates. The semiparametric estimator yields smaller wage premiums for higher education

degrees (particularly for advanced degrees) for both men and women. Veteran status pro-

vides a higher wage premium for women than men, whose veteran premium is virtually

negligible. Married men earn significantly higher wages than unmarried men, while mar-

ried and unmarried women exhibit no significant difference in their hourly wage rates.

The standard errors of our semiparametric estimates remain comparable to those obtained

using Heckman MLE. These results effectively demonstrate the strong efficiency of our

semiparametric estimator. There is a minimal difference in the estimated state fixed effects

between the estimators. Both men and women are the highest-paid in California, followed

by Arizona. The wage premium associated with residing in California and Arizona is higher

for women compared to men by approximately 5% points relative to their counterparts in

New Mexico.

The results on the gender wage gap also show interesting patterns as shown in Table

V. For Mexican Americans, the OLS and Heckit MLE again produce the same estimates

(around -19.5%). In contrast, our estimator indicates a smaller magnitude of the gender

wage disparity (-18%). As the HH bounds in this case are quite wide, all the point estimates

are contained in the bounds. For non-Hispanic whites, the patterns are quite the opposite.

Heckit MLE seems to over-correct the selection bias, delivering a much smaller magnitude

of the gender wage gap (-15.9%) than OLS (-20.9%). It also indicates much larger premi-

ums on higher degrees (college and advanced degrees) compared to high school diploma

than the OLS. These patterns are totally flipped in the semiparametric estimation. Our esti-

mator produces a very similar estimate of the gender wage gap (-21.1%) to the OLS, while

it produces lower wage premiums of higher degrees. Interestingly, the Heckman MLE esti-
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(c) Gender wage gap (Mexican-Americans) (d) Gender wage gap (Non-Hispanic whites)

FIGURE 6.—Bounds and point estimates of wage gaps across gender and racial groups

mate does not lie in the HH bounds, whereas our semiparametric estimate is still contained

in the bounds as shown in Figure 6(c)-(d).

Finally, we incorporate heteroskedasticity of the error term in our semiparametric model

and compute the heteroskedasticity-robust standard errors of the coefficients. Table VI

presents the results. The robust standard errors are generally almost identical to the stan-

dard errors computed under the homoskedasticity assumption. The robust standard errors

tend to be slightly larger than the non-robust errors, but occasionally slightly smaller.

This empirical application demonstrates that the widely used bounds approach proposed

by Lee (2009) can yield uninformative bounds in analyzing crucial labor market outcomes,

such as wages. The HH bounds offer a potential alternative, as they tend to provide tighter

bounds. However, even the feasible non-sharp version of the HH bounds (as the sharp char-
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acterization relies on an uncountable infinity of moment inequalities) are computationally

intensive. Moreover, the inference for these bounds hinges on resampling, which can be

computationally demanding. In contrast, our semiparametric estimator is straightforward

to implement in standard statistical packages like Stata and R, as it is a simple two-step

plugin estimator. Any nonparametric estimator that satisfies the rate condition outlined in

Section 3 can be used for the first stage of estimation, which calculates the selection prob-

ability. The second stage can then be executed using standard partial linear regression. The

asymptotically valid standard errors are computationally straightforward and incorporating

heteroskedasticity is also very tractable. The estimator is efficient, as demonstrated in this

application and simulations. Therefore, our estimator presents a valuable alternative that

TABLE VI

SEMIPARAMETRIC WAGE REGRESSION WITH HETEROSKEDASTICITY ROBUST STANDARD ERRORS

Racial Wage Gap Gender Wage Gap

Men Women Mexican White

Variable Coef s.e. Coef s.e. Coef s.e. Coef s.e.

wage gap -0.087 (0.009) -0.065 (0.006) -0.179 (0.013) -0.211 (0.005)

age 0.108 (0.010) 0.134 (0.008) 0.044 (0.013) 0.107 (0.007)

age2 -0.001 (0.000) -0.001 (0.000) 0.000 (0.000) -0.001 (0.000)

exp -0.043 (0.007) -0.082 (0.006) -0.013 (0.008) -0.056 (0.005)

exp2 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

less than hs -0.217 (0.016) -0.227 (0.017) -0.168 (0.019) -0.166 (0.013)

some college 0.045 (0.010) 0.027 (0.010) 0.075 (0.012) 0.030 (0.009)

college 0.210 (0.024) 0.133 (0.025) 0.316 (0.028) 0.165 (0.022)

adv degree 0.205 (0.034) 0.171 (0.034) 0.404 (0.039) 0.194 (0.030)

vet 0.013 (0.007) 0.032 (0.014) 0.076 (0.014) 0.002 (0.006)

marital 0.178 (0.012) 0.010 (0.007) 0.091 (0.007) 0.081 (0.003)

calif 0.141 (0.008) 0.199 (0.007) 0.146 (0.013) 0.185 (0.006)

arizo 0.050 (0.009) 0.099 (0.009) 0.047 (0.016) 0.074 (0.007)

texas 0.041 (0.010) 0.038 (0.008) -0.039 (0.014) 0.037 (0.006)

Note: ‘Wage gap’ is the coefficient estimate on the ‘Mexican American’ dummy for the racial wage gap and the coefficient

estimate on the ‘female’ dummy for the gender wage gap. ‘s.e.’ is the heteroskedasticity robust standard error.
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can be easily applied in cases where the bounds approaches fail to provide informative re-

sults, while it remains more robust than linear selection models. For researchers interested

in correcting sample selection bias without resorting to unjustifiable parametric or distri-

butional assumptions, we recommend reporting point estimates from our semiparametric

selection model.

6. CONCLUDING REMARKS

In this paper, we investigate point identification and efficient estimation of semiparamet-

ric selection models without imposing an exclusion restriction. We do not restrict the selec-

tion process to be linear, demonstrating identification of the model parameters when there

is at least one continuous covariate and the linearity of the selection process is violated.

The primary objective of our paper is to challenge the long-held belief that an exclusion

restriction is necessary for semiparametric selection models. Bounds approaches for selec-

tion models are often motivated by this misconception. We present convenient and practical

semiparametric estimators that accommodate non-monotone selection, heteroskedastic er-

ror, multiple control variables, and simple asymptotically valid inference. Our recommen-

dation for applied researchers is to report point estimates using our semiparametric method

when their preferred bounds are not sufficiently informative. The identifying conditions

are readily verifiable in practice, as researchers simply need to ensure the presence of a

continuous variable in the data and reject the linearity of the selection process.

In our simulations and empirical applications, we demonstrate that our method provides

more robust estimates of parameters of interest compared to linear selection models such as

the Heckman selection model and Honoré and Hu (2020)’s model. While our semiparamet-

ric approach is not necessarily nested within Lee’s fully nonparametric model, it imposes

more restrictive assumptions than Lee’s. Our model can permit parameter heterogeneity but

it does not allow treatment effects to vary across different subpopulations. Extending our

results to the case where the treated group and the untreated group have different treatment

effects beyond the assumption made in Honoré and Hu (2024) would be an intriguing av-

enue for future research. Another promising research direction would be identification of

semiparametric sample selection models with endogenous regressors.
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APPENDIX A: LEMMAS FOR ASYMPTOTIC PROPERTIES OF THE ESTIMATORS

We provide lemmas that are used in proving the asymptotic results in Section 3. Let X =

[X ′
1,X

′
2]
′ ∈Rd1+d2 be a random vector on a probability space, and let P be a collection of

Borel measurable real maps on Rd1+d2 such that p (X) is a continuous random variable

for each p ∈ P . Suppose X1 is a vector of continuous variables and X2 is a vector of

discrete varibles that take values from {x1, . . . , xM}. Let Sm and S1,m be the supports of

X · 1 [X2 = xm] and X1 · 1[X2 = xm].

We make the following assumptions under which Lemma 1 is derived.

ASSUMPTION 8: (i) E [Y |p= ·] and E [X|p= ·] are twice continuously differentiable

with derivatives bounded uniformly over p ∈B (p0; ε) with some ε > 0; (ii) for some ε > 0,

P [D = 1|p0 = p]> ε for all p ∈ [0,1] .
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ASSUMPTION 9: There exists ε > 0 such that for each p ∈B (p0; ε), (i) p is continuous

and its conditional density function given D = 1 is bounded uniformly over p ∈ B (p0; ε)

and bounded away from zero on the interior of its support uniformly over p ∈B (p0; ε); and

(ii) the set {p (x) ;p ∈B (p0; ε) , x ∈ Sm} is an interval of finite length for all 1≤m≤M .

The following lemma proves that the sum of the terms in the RHS of (14), in which p̃ is

replaced with p̂, is op(1).

LEMMA 1: Let Assumptions 8–9 hold. Then,

E
[
(ψ1i (p̂n)− ψ1i (p0))

2
]
, E

[
(ψ2i (p̂n)− ψ2i (p0))

2
]
, E

[
(ψ3i (p̂n)− ψ3i (p0))

2
]
→ 0,

as p̂n →p p0, where

ψ1i (p) :=DiE [Xi|pi,Di = 1]Zi, ψ2i (p) :=DiE [Xi|pi,Di = 1]E [Zi|pi,Di = 1]

ψ3i (p) :=DiXiE [Zi|pi,Di = 1]−E [DiXiE [Zi|pi,Di = 1]]

PROOF: Since

ψ1i (p̂n)− ψ1i (p0) =Di (E [Xi|p̂ni,Di = 1]−E [Xi|p0i,Di = 1])Zi,

ψ2i (p̂n)− ψ2i (p0) =Di (E [Xi|p̂ni,Di = 1]−E [Xi|p0i,Di = 1])E [Zi|p̂ni,Di = 1]

+DiE [Xi|p0i,Di = 1] (E [Zi|p̂ni,Di = 1]−E [Zi|p0i,Di = 1]) ,

ψ3i (p̂n)− ψ3i (p0) =DiXi (E [Zi|p̂ni,Di = 1]−E [Zi|p0i,Di = 1])

+E [DiXiE [Zi|p̂ni,Di = 1]]−E [DiXiE [Zi|p0i,Di = 1]] ,

it follows from Assumption 8 that ψki (p̂n)→p ψki (p0) for k = 1,2,3. Furthermore, ψ2
ki is

uniformly integrable from Assumption 9, which completes the statement. Q.E.D.

Now we further make the following assumptions to derive (15), which is used to prove

that Bn in (11) is op
(
n−1/2

)
, in Lemma 2.

ASSUMPTION 10: For r ≥ 4, supx∈X E
[
|Y |r |X = x

]
+ supx∈X ∥X∥r <∞.
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ASSUMPTION 11: For each m= 1, . . . ,M , (i) E [Y |X1 = x, (X2,D) = (xm,1)] and the

inverse image of p ∈ P are Lipschitz continuous; and (ii) there are a finite number of

partitions of Sm such that p (X) is monotone in each partition.

LEMMA 2: Let Assumptions 9–11 hold. Then, there exist C > 0 and ε > 0 such that for

each η ∈ (0, ε],

sup
p:∥p−p0∥≤η

∥a (p)− a (p0)∥ ≤Cη2.

Proof. By Theorem 1 of Song (2012), the statement in the lemma holds when Assump-

tion 2.(ii) of Song (2012) is satisfied. Let A be a subset of [0,1]. The inverse image p−1(A)

is the set of all points in the support of X that map into A:

p−1(A) = {x ∈Rd1+d2 : p(x) ∈A}.

Choose a1 ≤ a2 ≤ a3 ≤ a4, and let B1 := [a2, a3] and B2 := [a1, a4], such that p−1 (B1) ∩
Sm ̸= ∅. Let A1,p,m := p−1 (B1)∩Sm and A2,p,m := p−1 (B2)∩Sm, so that, with bL,p,m :=

inf {p (x) : x ∈ Sm} and bU,p,m := sup{p (x) : x ∈ Sm},

A1,p,m = {x ∈ Sm : c2,p,m ≤ p (x)≤ c3,p,m} , A2,p,m = {x ∈ Sm : c1,p,m ≤ p (x)≤ c4,p,m} ,

where

c1,p,m := max
{
a1, bL,p,m

}
, c2,p,m := max

{
a2, bL,p,m

}
,

c3,p,m := min
{
a3, bU,p,m

}
, c4,p,m := min

{
a4, bU,p,m

}
.

Note that the Hausdorff metric between A1,p,m and A2,p,m is defined by

d (A1,p,m,A2,p,m) := max

{
sup

a∈A1,p,m

inf
b∈A2,p,m

∥a− b∥, sup
b∈A2,p,m

inf
a∈A1,p,m

∥a− b∥

}
.
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Since supa∈A1,p,m
infb∈A2,p,m

∥a− b∥= 0,

d (A1,p,m,A2,p,m) = sup
b∈A2,p,m

inf
a∈A1,p,m

∥a− b∥

≤ sup
b∈A21,p,m

inf
a∈A1,p,m

∥a− b∥+ sup
b∈A22,p,m

inf
a∈A1,p,m

∥a− b∥

≤ sup
b∈A21,p,m

inf
a∈Ā11,p,m

∥a− b∥+ sup
b∈A22,p,m

inf
a∈Ā12,p,m

∥a− b∥,

where

A21,p,m = {x ∈ Sm : c1,p,m ≤ p (x)≤ c2,p,m} , Ā11,p,m = {x ∈ Sm : p (x) = c2,p,m} ,

A22,p,m = {x ∈ Sm : c3,p,m ≤ p (x)≤ c3,p,m} , Ā12,p,m = {x ∈ Sm : p (x) = c3,p,m} .

Let S1
m, . . . , S

nm
m be partitions of Sm such that p (X) is monotone in each partition. Then

sup
b∈A21,p,m

inf
a∈Ā11,p,m

∥a− b∥ ≤
nm∑
k=1

sup
b∈A21,p,m∩Sk

m

inf
a∈Ā11,p,m

∥a− b∥,

sup
b∈A22,p,m

inf
a∈Ā12,p,m

∥a− b∥ ≤
nm∑
k=1

sup
b∈A22,p,m∩Sk

m

inf
a∈Ā12,p,m

∥a− b∥

For each k = 1, . . . , nm, there exists ck such that

sup
b∈A21,p,m∩Sk

m

inf
a∈Ā11,p,m

∥a− b∥ ≤ ck (a2 − a1) ,

sup
b∈A22,p,m∩Sk

m

inf
a∈Ā12,p,m

∥a− b∥ ≤ ck (a4 − a3) ,

which confirms that Assumption 2.(ii) of Song (2012) is satisfied.
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