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Abstract

When estimating the effects of treatments defined by complex formulas,
researchers often use simple functions of exogenous shocks as instruments.
A leading example is “simulated instruments” for public policy eligibility,
which capture variation in state-level policy generosity. We show how
more powerful instruments can be constructed by incorporating heteroge-
neous shock exposure while using a recentering procedure to avoid bias.
We characterize the asymptotically efficient instruments in this class and
propose an algorithm for constructing feasible approximations to them.
Compared to a simulated instrument approach, our approach yields a
44% smaller standard error on the private insurance crowd-out effect of
Medicaid enrollment from the 2014 Affordable Care Act expansions.
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1 Introduction

Many economic variables are given by complex formulas, incorporating multiple sources of variation.
Examples include an individual’s eligibility for a public program like Medicaid or their level of
unemployment insurance benefits, both of which are functions of state-level policy decisions as well
as various individual characteristics (e.g. family structure, household income, or work history).
When estimating the causal effects of such treatments, researchers often construct instrumental
variables (IVs) as simple functions of only one source of variation. For example, the influential
“simulated instrument” approach of Currie and Gruber (1996a,b) leverages state-level policy shocks
by constructing an index of Medicaid generosity which is then used to instrument an individual’s
Medicaid eligibility.1 These instruments are valid when the policy shocks are exogenous and the
chosen function of them predicts eligibility, at least somewhat.

This paper shows how more powerful instruments can be constructed and used in such settings.
Intuitively, power gains can come from the instrument predicting the treatment better. This can be
achieved by constructing the instrument as a treatment prediction that is a function (or “formula”)
of not only the exogenous shocks but also other observables capturing observations’ differential
shock exposure. Such treatment predictions need not be valid instruments, because of the non-
random observables used in their construction. However, following the insight of Borusyak and Hull
(2023), this problem can be addressed by “recentering” the treatment prediction: i.e., subtracting
its expectation over the exogenous shocks, holding fixed the other observables. The class of valid
formula instruments is therefore much broader than functions of exogenous shocks only.

We first characterize optimal formula instruments in a general setting. We show that the asymp-
totically efficient IV involves three steps: obtaining the best predictor of the treatment from both
the shocks and other predetermined measures of shock exposure, recentering it to avoid bias, and
adjusting for the error term’s dependence on shock exposure and heteroskedasticity. This result
does not require iid data, covering a wide range of empirical settings where both observed and
unobserved shocks—potentially varying at different “levels”—affect the treatment and outcome.

We then propose an algorithm to approximate optimal IVs in practice, focusing on the first two
steps: obtaining the best treatment predictor and recentering it. While implementing both steps
nonparametrically may be feasible in some settings, in general they represent a high-dimensional
problem that may be impractical or infeasible—especially in non-iid data. Instead, we propose using
knowledge the researcher has on the treatment formula as well as the “design” (i.e., data-generating
process) of the exogenous shocks. First, the researcher predicts the treatment from the shocks
and other observables which enter the treatment formula, setting any unobserved or endogenous
components of the formula to a base value (such as zero). When there are no unobserved or
endogenous components, this prediction is the treatment itself. Second, the researcher recenters
this prediction by drawing counterfactual sets of exogenous shocks, following Borusyak and Hull

1See also Cullen and Gruber (2000) and East and Kuka (2015) for simulated instruments in the unemployment
insurance setting. Other simulated instrument applications include Cohodes et al. (2016), Frean et al. (2017), Brown
et al. (2018), and Hackmann (2019).
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(2023). Optionally residualizing the recentered prediction on covariates yields an approximation to
the optimal instrument, up to the heteroskedasticity adjustment that is not popular in practice.

Specializing this algorithm to the program eligibility setting yields a likely improvement over
the conventional simulated instruments approach. If program eligibility is fully determined by pre-
determined observables and the policy shock, our proposed approach involves instrumenting an
individual’s eligibility with the difference between her actual eligibility (as the best possible pre-
dictor) and her expected eligibility, where the expectation is taken for each individual across the
exogenous policy shocks that could have been realized, (such as realized policies of comparable
states). If program eligibility depends on other variables, such as income that can respond endoge-
nously to policy shocks, the researcher can imperfectly predict eligibility using lagged income and
recenter that prediction instead.

The proposed algorithm can also be helpful in many popular settings beyond simulated IV.
Consider, for instance, Boustan et al. (2013) who construct an instrument for the change in the
Herfindahl index of regional income distribution. They use exogenous national shocks to incomes
of different population groups along with initial local shares of those groups. From these data, they
measure and use as an IV the Herfindahl change that would follow if the exogenous income shocks
were the only changes that took place, in a nonlinear version of a Bartik (1991) instrument. While
this instrument is generally not valid without recentering, our results show that the recentered
version of their IV is approximately optimal. Notably, conventional results on optimal instruments
with iid data would not be applicable in their context, in which the same national shocks affect
all regions simultaneously. Our results similarly justify the shift-share instrument construction
proposed informally by Borusyak et al. (2025b) and instruments for changes in market access due
to transportation upgrades proposed by Borusyak and Hull (2023).

We then demonstrate the power gains empirically, in an application to the partial 2014 Medicaid
expansion from the Affordable Care Act (ACA). A recentered IV which incorporates variation in
individuals’ exposure to state expansion decisions yields a 44% smaller standard error on the private
insurance crowdout effect of Medicaid enrollment, compared to a more conventional simulated IV
approach leveraging expansion shocks only. These power gains are robust to different IV speci-
fications and assumptions on the expansion shock design. Power simulations show the minimum
detectable effects of recentered IV are roughly three times smaller than those of simulated IV.

Our theoretical results build on the classical literature on efficiency bounds and optimal instru-
ments in linear and partially linear models. For linear models without functional nuisance param-
eters, Chamberlain (1987) characterizes the semi-parametric efficiency bound (SEB) and gives an
IV estimator that achieves the bound. More closely connected to our setting is the partially linear
model of, e.g., Robinson (1988): it is the special case when the outcomes, treatments, shocks, and
other observed characteristics are iid, with the role of the nuisance function played by the expecta-
tion of the error term given the characteristics. There Chamberlain (1992) characterizes the SEB,
Newey (1989) proposes an estimator that achieves this bound in the special case when the treat-
ment is exogenous, and Ai and Chen (2003) derive an efficient sieve-based estimator in the general
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case. Against this backdrop, our theoretical contribution is to characterize optimal instruments in a
broad class of non-iid settings.2 We develop a proof technique for such settings: we characterize the
estimator that minimizes an approximation to the estimator variance in finite samples and verify
that the approximation is accurate in large samples under suitable regularity conditions. We further
show that our optimal IV attains the Chamberlain (1992) SEB in the iid case.

In contemporaneous work, Coussens and Spiess (2021) characterize optimal instruments given by
interactions of a single observation-specific shock with predetermined characteristics, highlighting
the benefit of interacting the shock with the complier status of the individual. Our result nests
theirs, with individual’s exposure to the shocks generalizing the complier status beyond binary
instruments and allowing multiple shocks to affect the same observation’s treatment and the same
shocks to affect multiple observations’ treatments. While Coussens and Spiess (2021) focus on
learning the compliance status nonparametrically in iid data, we leverage a priori information on
the structure of the treatment to approximate the optimal IV.

We organize the rest of the paper as follows. The next section builds intuition with a simple
example in the simulated instrument setting. Section 3 develops the theoretical results while Section
4 demonstrates them in an application. Section 5 concludes. Additional theoretical results are given
in Appendix A; all proofs are given in Appendix B.

2 Motivating Example

Consider estimating the causal effect of eligibility for a public program like Medicaid on an outcome
like program takeup or later health.3 Formally, we consider a simple causal model of

yi = βxi + εi,

relating outcome yi for individual i to her Medicaid eligibility xi. Here εi denotes the potential
outcome that individual i would see when ineligible for Medicaid (i.e., when xi = 0) and β is the
causal parameter of interest. We wish to estimate β while allowing for the possibility of endogenous
eligibility: i.e., that xi and εi are correlated. To focus on estimation efficiency, we assume here that
the causal effect β is homogeneous.

Medicaid eligibility can be represented as a formula which incorporates state-level government
policy and individual characteristics that determine an individual’s exposure to different polices.
To formalize this, let ci be a vector of characteristics for individual i (e.g., family structure and
income), let s(i) ∈ {1, . . . , 50} index i’s state of residence, and let gk be the Medicaid policy in state
k formalized as the set of family types and income combinations that make one eligible for Medicaid

2Among non-iid settings, optimal instruments have been most thoroughly studied in time-series data (e.g., Hansen
(1985); see Anatolyev (2007) for a review).

3This example builds on one which Borusyak and Hull (2023, Section 2) use to motivate instrument recentering.
Here we use it to motivate the new theoretical results in Sections 3 and the empirical analysis in Section 4.
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in that state. Eligibility is then given by:

xi = 1
[
ci ∈ gs(i)

]
.

Consider estimation of β in an idealized scenario where Medicaid policies are drawn in a natural
experiment: i.e., randomly from some pool of potential policies.4 Formally we suppose the gk are
drawn from some distribution, independently of all ci, s(i), and εi. We do not assume the other
determinants of eligibility are exogenous (i.e., unrelated to εi) : individuals with certain charac-
teristics or living in particular states may have systematically higher or lower potential outcomes.
Hence, despite the exogeneity of state policies, ordinary least squares (OLS) estimation of β is likely
biased. We need an instrument for eligibility, which is uncorrelated with εi but correlated with xi.

Simulated instruments leverage the exogenous policy shocks by constructing an IV as a function
of state policy only: zi = f

(
gs(i)

)
. The function f(·) is chosen to make the instrument powerful—

specifically, to make zi a strong predictor of the eligibility treatment. The strongest predictor that
only varies through state policy is E

[
xi | gs(i)

]
, which can be interpreted as the average generosity of

i’s state policy. Currie and Gruber (1996a,b) propose a simple approximation to this predictor. They
build a large and nationally-representative group of individuals j = 1, . . . , J , simulate individuals’
eligibility under each state policy ḡ, and define f(ḡ) as the fraction of individuals who would be
eligible under that policy:

f(ḡ) =
1

J

J∑
j=1

1 [cj ∈ ḡ] .

The simulated instrument zi = f
(
gs(i)

)
is a fixed function of the exogenous policy in an individual’s

state and is therefore uncorrelated with εi.5 It is nevertheless correlated with xi because we expect
the eligibility of any given individual to be higher in states where the policy is more generous.

A drawback of such instruments, which limits their power, is that they discard all within-state
variation in eligibility due to ci. This may seem unavoidable, as such variation is non-random
and using it may introduce bias. For example, one might consider constructing an instrument to
approximate E

[
xi | gs(i), ci

]
instead of E

[
xi | gs(i)

]
; the former has a stronger first-stage correlation

with xi, so using this IV would likely produce a smaller standard error than zi. However, this
instrument may be correlated with εi through some characteristics in ci, making the IV estimates
biased. Indeed, here E

[
xi | gs(i), ci

]
= xi, since eligibility is fully determined by gs(i) and ci. Using

it as an instrument is thus equivalent to OLS estimation, with the same bias concerns as before.
The main practical insight of this paper is that improved predictions of formula treatments,

4This does not presume that any policy could arise: for instance, the pool may only include potential policies that
prioritize the poor.

5Formally, for any fixed f(·), E [zi | s(i), εi] = E
[
f
(
gs(i)

)
| s(i), εi

]
=

∫
f(ḡ)dG(ḡ) = E [zi] where G(·) is the

distribution of potential Medicaid policies. Thus Cov [zi, εi] = E [(zi − E [zi]) εi] = E [(E [zi | si, εi]− E [zi]) εi] = 0.
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including xi itself, can be used to construct valid and more powerful instruments. Consider:

z̃i = 1[ci ∈ gs(i)]︸ ︷︷ ︸
=xi

− 1

50

50∑
k=1

1[ci ∈ gk]︸ ︷︷ ︸
≡µi

.

The first term of z̃i is individual i’s eligibility, determined by both her characteristics ci and the
realized policy draw in her state gs(i). The second term is her expected eligibility over policy
draws. This µi is derived from a thought experiment in which the realized policies are randomly
reshuffled across the 50 states, since each permutation of (g1, . . . , g50) is as likely to have been
realized when policies are drawn randomly from some set. On average, an individual’s eligibility
across such permutations equals the share of states in which her characteristics would make her
eligible. Borusyak and Hull (2023) show that the recentering of xi by µi makes z̃i a valid instrument.
Intuitively, IV regressions that use z̃i compare individuals who have more Medicaid eligibility than
expected given the policy experiment (i.e., those with z̃i > 0) to those with less-than-expected
eligibility (with z̃i < 0). Since this delineation is by chance, driven only by the random policy
shocks, such IV regressions are free from bias.6 In the next section we discuss different strategies
for recentering that follow from different assumptions of how the shocks are drawn.

The recentered instrument z̃i is likely more powerful than the simulated instrument zi, as it is
more predictive of the treatment. By construction, the policy generosity measure f

(
gs(i)

)
is not

tailored to an individual’s exposure to the policies, limiting zi’s correlation with xi. In contrast,
z̃i is perfectly correlated with xi conditional on ci (i.e., among individuals with the same family
structure and income but who reside in different states). Only individuals for whom the policy
variation is relevant are in the effective sample with z̃i, since z̃i = 0 for any individual who is, e.g.,
so rich that they are not eligible under any policy or so poor that they are eligible under all policies.
The next section formalizes the sense in which such instruments likely yield precise estimates of β,
and proposes a general algorithm for producing them from formula treatments like xi.

Power when using z̃i may be further increased by including functions of ci (e.g. family size or
some income bins) as controls. Such controls soak up residual variation in εi while not affecting the
instrument’s first stage (because z̃i is uncorrelated with all predetermined characteristics as well
as with εi), typically increasing estimation efficiency.7 The next section formalizes this logic by
showing how the theoretically most efficient IV estimation of β involves such residual adjustment
in addition to forming the recentered best predictor z̃i; we add an optional step to the algorithm
that involves such adjustment. Although extra covariates can increase the power of simulated IV
estimation too, the two approaches do not coincide even when controlling for ci flexibly.8

6More formally, Borusyak and Hull (2023) show µi and xi have the same covariance with εi so E [(xi − µi) εi] = 0.
7If the included controls linearly span expected eligibility µi, using z̃i as the instrument is numerically equivalent to

using OLS estimation on xi with the same controls—slightly simplifying implementation (Borusyak and Hull, 2023).
8The two approaches would coincide if policy generosity was measured for each combination of characteristics in ci

separately. This strategy, however, is only feasible if ci is discrete with a sufficiently small number of distinct values,
which is not the case in most applications of simulated IV (see., e.g., Gruber (2003, p.47)).

6



Before proceeding, we note that while xi in this example is fully determined by the exogenous
policy shocks gs(i) and predetermined individual characteristics ci, similar recentered IVs may be
constructed for treatments with endogenous components. For example, suppose an individual’s
income ui is relevant to her Medicaid eligibility, ci = (ui, c̃i), but it is not predetermined: income
may respond to the policy shocks as individuals change employment. In this case z̃i will not be a
valid instrument, as recentering by µi will not account for the endogenous response of ci to gs(i).
Still, a strong predictor of xi can be formed from its formula: one can compute the predicted
eligibility based on the realized policy shocks, other characteristics c̃i, and an earlier measure of
income u0i that replaces ui. This approximation of E

[
xi | gs(i), u0i, c̃i

]
can then be recentered, as

before, to obtain a valid and likely powerful instrument. Cases where some characteristics relevant
for eligibility are unobserved by the researcher can be handled similarly.9

3 Theory

We now develop general theory for optimal formula instruments. Section 3.1 introduces the set-
ting and the class of valid recentered instruments. Section 3.2 derives the recentered instrument
that is asymptotically most efficient, while Section 3.3 develops an algorithm for obtaining feasible
approximations to the optimal IV.

3.1 Setting

An outcome yi and treatment xi = hi(g, w, u) are observed for a set of units i = 1, . . . , N . Here
h1(·), . . . , hN (·) is a set of known functions, g = (g1, . . . , gK) is a set of observed shocks (potentially
varying at a different level than i), w is a set of observed predetermined variables, and u is an-
other set of variables (potentially unobserved and also potentially varying at different levels). This
formulation of xi is so far without loss of generality; below we consider assumptions that make it
restrictive and introduce substantive distinctions between g, w, and u. Since multiple observations
may be exposed to the same observed and potentially unobserved shocks, we do not make any
assumptions of independently or identically distributed (iid) data and instead work with a finite
population of size N ; the results apply to data randomly drawn from some population as well.

A causal effect or structural parameter β relates the outcome to treatment by

yi = βxi + εi, (1)

where εi is an unobserved error. Here we assume yi and xi are scalar and demeaned (such that no
constant is required in estimation), and that the outcome model is linear with a constant effect.10

9For example, we might be interested in the effects of Medicaid enrollment rather than eligibility and not observe an
individual’s compliance status (i.e. whether they would take up Medicaid when eligible). This ui can be ignored when
predicting xi from the shocks and predetermined observables, e.g. by presuming that all individuals are compliers. If
compliance status can be partially predicted, incorporating this may yield further precision gains.

10The constant effects assumption follows the optimal IV literature, facilitating an analysis of relative efficiency
across different IV estimators since different instrument constructions will generally identify different weighted averages
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To estimate β, we look for an instrument z = (z1, . . . , zN )
′ that satisfies an exogeneity condition:

E

[
1

N

∑
i

ziεi

]
= 0 (2)

as well as a relevance condition E
[
1
N

∑
i zixi

]
̸= 0, such that β = E [

∑
i ziyi] /E [

∑
i zixi].11 The IV

estimator corresponding to z is then given by β̂ [z] = (
∑

i ziyi) / (
∑

i zixi).
While the class of IV estimators is restrictive relative to the more general class considered in,

for instance, Chamberlain (1992), our non-iid analysis makes it much less restrictive than it may
seem. In particular, by the Frisch-Waugh-Lovell theorem, it includes IV estimators with controls
since zi can be chosen to be an in-sample residualization of some instrument on a set of covariates.
Indeed, as we show below, our optimal instrument involves such adjustment.

We form instruments by assuming the shocks g are exogenous and relevant to the treatment.
Specifically, we suppose that, conditional on the predetermined variables w, the outcome errors are
mean-independent of g and the treatment is affected by g (or is otherwise dependent on it):

Assumption 1. (Shock exogeneity): E [εi | g, w] = E [εi | w] a.s. for all i.

Assumption 2. (Relevance): E [xi | g, w] ̸= E [xi | w] with positive probability for some i.

In the basic Medicaid example, g is the vector of state eligibility policies and w contains the relevant
characteristics of all individuals along with their states of residence. Then hi(·) is the known
algorithm which checks the eligibility of individual i using these inputs, and u is empty. If income
changes in response to the policy, we include it in u while adding pre-period income to w.

Two remarks about Assumption 1 are due here. First, in some applications, the shocks are
randomized after the realization of w; this makes them fully independent from w as well as from
the errors under an exclusion restriction (that shocks only affect outcomes through the treatment),
satisfying Assumption 1. Under full independence, the class of valid moment conditions is wider
(Poirier, 2017); by making the weaker and more conventional Assumption 1, we limit ourselves to
IV estimators. Second, Assumption 1 allows εi to be arbitrarily correlated with the variables in w

such that OLS estimation is generally biased even if u is empty.
The class of instruments satisfying exogeneity under Assumption 1 can be sharply characterized.

We refer to instruments constructed as zi = fi(g, w) for a set of non-stochastic functions {fi(·)}Ni=1

as formula instruments. We further call them recentered formula instruments, or just recentered
instruments, if they are mean-zero given w:

E [fi(g, w) | w] = 0 a.s. for all i. (3)

Let R denote the class of recentered instruments.12 We then have the following result:

of heterogeneous effects. See Borusyak and Hull (2021, appendix C.1) for a characterization of these averages.
11We assume throughout that relevant expectations and other moments are well defined.
12R clearly includes instruments of the form zi = pi(g, w) − E [pi(g, w) | w] for any (pi(·))Ni=1. Moreover, for any
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Proposition 1. Under Assumption 1, all recentered instruments satisfy the exogeneity condition
(2). Moreover, only recentered instruments satisfy (2): for any z = (zi)

N
i=1 there exists a conditional

distribution of ε | (z, g, w) such that Assumption 1 holds but (2) fails unless z is a deterministic
function of (g, w) satisfying (3).

The first part of the proposition follows Borusyak and Hull (2023) to show that recentered instru-
ments are valid. The second part is new, and highlights two ideas. First, formula instruments
that are not recentered include some variation from w and are thus prone to exogeneity failures
without further restrictions on the error term. Second, Assumption 1 would not justify the validity
of instruments constructed from any other data besides the shocks and predetermined variables in
w. With this characterization, we next look for the most efficient recentered instrument.

3.2 Optimal IV

We take a non-standard approach to deriving the efficient instrument, given the non-iid setup. We
first give an approximation to the finite-population variance of any recentered IV estimator which
we show is accurate in large samples under appropriate regularity conditions. We then find the
recentered instrument that minimizes this approximation in finite samples.

The approximate variance of the IV estimator using recentered instrument z ∈ R is defined as:

V [z] =
Var [z′ε]
E [z′x]2

,

for ε = (ε1, . . . , εN )
′ and x = (x1, . . . , xN )

′, assuming the relevant variance and expectation ex-
ist. This expression represents the variance of 1

N z
′ε/E

[
1
N z

′x
]
; if the first-stage covariance 1

N z
′x

converges to a non-zero constant as N → ∞, we expect Var
[
β̂ [z]

]
≈ V [z] when N is large and

appropriate regularity conditions hold.
We define some additional concepts to formalize this asymptotic approximation. First, for a non-

random sequence rN → ∞, we say that an estimator β̃ converges to β at rate rN when rN
(
β̃ − β

)
converges to a non-degenerate distribution with zero mean and variance 0 < V < ∞ as N → ∞.13

We refer to V as the asymptotic variance of β̃.14 Second, we say that a recentered IV estimator
β̂[z] for z ∈ R is regular if it converges to β at some rate rN , if it has an asymptotic first stage (i.e.
1
N z

′x
p→M for some M ̸= 0), and if the sequences of 1

N z
′x and

(
rN

1
N z

′ε
)2 are uniformly integrable.

We then have the following result:

Proposition 2. For any regular recentered IV estimator β̂ [z] that converges to β at rate rN with

z ∈ R, in-sample residuals of z on any set of functions r(w) are also in R; by the Frisch–Waugh–Lovell theorem, these
correspond to estimators that use z as an IV while controlling for r(w). This means estimators using any pi(g, w) as
an IV while controlling for E [pi(g, w) | w] can be represented as recentered IV estimators because, with this control,
the estimator is numerically equivalent to the one which instruments with pi(g, w)− E [pi(g, w) | w].

13Borusyak and Hull (2023) provide sufficient conditions for consistency of recentered IV estimators.
14The asymptotic variance concept is most useful when the limiting distribution of β̃ is normal. However, it can be

considered more broadly; in particular, a researcher with a quadratic loss function will generally value reductions in
V /r2N outside the normal case.
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variance V , V [z] provides a good large-sample approximation to the variance:

lim
N→∞

V [z]

V /r2N
= 1.

This result justifies looking for the recentered IV estimator with the smallest approximate variance
V [z]. The following theorem characterizes the solution:

Theorem 1. Suppose Assumption 1 holds, E [εε′ | g, w] = E [εε′ | w] a.s., and this matrix is a.s.
invertible. Consider the recentered instrument

z∗ = E
[
εε′ | w

]−1
z̃ for z̃ = E [x | g, w]− E [x | w] . (4)

The associated β̂[z∗] has the smallest approximate variance of all recentered IV estimators:

z∗ ∈ arg min
z∈R

V [z] ,

with
V [z∗] = E

[
(E [x | g, w]− E [x | w])′ E

[
εε′ | w

]−1
(E [x | g, w]− E [x | w])

]−1
.

Three comments are due here. First, note that we impose weak conditions on the data-generating
process: only that the shocks are exogenous in the sense of Assumption 1 and that the errors are not
perfectly collinear.15 While Theorem 1 also requires the second moments of ε to be independent of
g given w (which holds when g ⊥⊥ (ε, w), as when shocks are fully randomized), Appendix Theorem
A1 provides a more cluttered expression for the optimal IV without that assumption. Second, we
note that the approximate variance is minimized among all recentered IV estimators, regardless of
whether they are regular, although V [z] need not be a useful object otherwise. Third, note that by
Assumption 2 the instruments z̃ and z∗ are non-trivial and V [z∗] is finite.

Theorem 1 builds on classic results on efficient estimation in iid data. In particular, Chamberlain
(1987) characterizes optimal instruments in the iid linear model (see also Newey and McFadden
(1994) for a different characterization that our proof leverages). Newey (1989, Section 5) derives an
optimal estimator for the partially linear model with conditionally exogenous treatment, in which
the functional nuisance parameter corresponds to E [ε | w] in our notation.16 Ai and Chen (2003)
propose a sieve-based efficient estimator in the general iid case. While the key advantage of Theorem
1 is that it applies in non-iid data, it is also instructive to specialize it to the iid case in which the
semi-parametric efficiency bound (SEB) of Chamberlain (1992) applies. Appendix Proposition A1
shows that z∗ attains this SEB asymptotically, suggesting that our limiting of the estimator class
to recentered IV does not carry an asymptotic efficiency cost.17

15If E [εε′ | w] were not invertible, the unobservables would be unusually dependent, in that there would exist a
function c(w) satisfying c(w)′ε = 0 and revealing β exactly for some realizations of w, provided c(w)′x ̸= 0.

16Conditional treatment exogeneity means E [ε− E [ε | w] | x] = 0, which here holds when u = ∅.
17Despite this, the estimators in Newey (1989) and Ai and Chen (2003) do not coincide with the one in Theorem 1

in the iid case: both of them are weighted versions of the Robinson (1988) estimator, which involves non-parametric
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Equation (4) reveals the structure of the optimal instrument z∗. It is based on the best predictor
of treatment given the exogenous shocks and predetermined variables, E [x | g, w], recentered by its
expectation over the shocks E [x | w] = E [E [x | g, w] | w]. This recentered best predictor z̃ is then
adjusted by E [εε′ | w]−1. The following proposition unpacks this last step:

Proposition 3. Let ψ = E [ε | w] and Ω = Var [ε | w] be the conditional mean and variance of the
errors. Then z∗ from Theorem 1 can be written as

z∗ = Ω−1 (z̃ − νρψ) , (5)

where ρψ = ψ′Ω−1z̃
ψ′Ω−1ψ

ψ is the Ω−1-weighted projection of z̃ on ψ, and ν = ψ′Ω−1ψ
1+ψ′Ω−1ψ

∈ [0, 1).

This result shows that z∗ is obtained by two sequential adjustments to the recentered best predictor
z̃. First, z̃ is partially residualized on ψ. In many cases, ν → 1 when N → ∞; by the Frisch-
Waugh-Lovell theorem, the limit case of ν = 1 amounts to controlling for ψ while instrumenting
with z̃.18 Second, there is an adjustment for the inverse conditional variance of the errors Ω−1, as
in conventional generalized least squares estimation.

Appendix Proposition A2 specializes Theorem 1 to the class of “shift-share” IVs: instruments
that are linear in the shocks and for which (as discussed below) feasible versions may be easier to ob-
tain. The optimal instrument in this class resembles z∗, except with z̃ replaced by an optimal linear
prediction of the treatment—i.e., the fitted value from a linear regression of xi on the (recentered)
vector of shocks, with coefficients that can vary across i and depend on w. This linear regression
parallels the non-parametric regression of xi on the shocks that yields E [xi | g, w] in Theorem 1.
Like the non-parametric analog, the linear regression is generally infeasible as it is fit separately for
each observation, over the distribution of the shock vector (of which there is only one observation).
However, it can guide the choice of feasible instruments.

3.3 Feasible Approximations

Drawing on the above results, we propose an approach (Algorithm 1) for obtaining feasible ap-
proximations to z∗ in three steps: approximating the best predictor E [x | g, w], recentering it, and
adjusting for E [εε′ | w]−1. The algorithm leverages the researcher’s knowledge of the formula of the
treatment and the “design” (i.e. data-generating process) of the exogenous shocks. Consequently,
it can be used even in situations when the conditional means and variances underlying z∗ cannot
be consistently estimated because the data are not iid (i.e., we allow the entire sample of (x, g, w, ε)
to be one draw from some joint data-generating process) or otherwise high-dimensional.

residualization of y and x on w, while β̂ [z∗] involves partially controlling for E [ε | w] (see Proposition 3 and footnote
18 below).

18In general the residualization is partial for the same reason why, in conventional panel data settings, the efficient
random effects estimator partially demeans the data by unit (e.g. Wooldridge (2002, p.286)). As with the unit-specific
residual means in the random effects case, ψ is orthogonal to z̃ in expectation but not in the observed realization. Full
residualization which imposes in-sample orthogonality is thus generally inefficient, as with the fixed effect estimator.
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Algorithm 1 Feasible Approximation to the Optimal IV

0. Represent the treatment as a formula xi = hi(g, w, u) for known functions hi(·), where the
inputs are exogenous shocks g, predetermined variables w, and possibly other variables u that
are either unobserved or may respond to the shocks.

1. Construct a treatment prediction pi(g, w). If the treatment is a function of g and w only, set
pi = xi. Otherwise, set pi = hi(g, w, ū) by replacing u with some base value ū.

• Optional: Replace pi(g, w) with its linear approximation around some base value g = ḡ.

2. Form the instrument by recentering the prediction: z̃i = pi(g, w)−µi for µi = E [pi(g, w) | w].

• To obtain µi, draw some (preferably large) number J of counterfactual shock vectors
g(j) from the data-generating process of g (e.g., permutations of g when the shocks are
exchangeable). Set µi = 1

J

∑J
j=1 pi(g

(j), w).
• If pi(g, w) is linear in the shocks, µi can be computed analytically from a specification

for E [g | w] without a full specification of the shock data-generating process.

3. Optional: Residualize z̃ on predetermined variables (i.e., functions of w) that may predict the
error ε, and reweight it by an estimate of Var [ε | w]−1.

The first step is to approximate the best predictor E [xi | g, w] with some pi(g, w) using the
treatment formula xi = hi(g, w, u). This is trivial when u is empty, as in the initial Section 2
example, since then E [xi | g, w] = xi ≡ pi(g, w). Otherwise, we propose forming a predictor by
integrating hi(g, w, u) over some hypothetical distribution of u | g, w. In the simplest case, if there
is a typical or default value ū of u, it can be plugged in to form a prediction of pi(g, w) = hi(g, w, ū).
This is the approach suggested at the end of Section 2, where lagged income u0i substitutes for the
potentially endogenous contemporaneous income ui.19 Importantly, per Proposition 1, a misspec-
ified distribution for u | g, w may lead to an imperfect approximation of E [xi | g, w] but this will
not bias estimation so long as the approximation is recentered.

The second step is to recenter the predictor pi(g, w) using knowledge of the shock assignment pro-
cess: formally, the distribution of g | w. Here we summarize several approaches, following Borusyak
and Hull (2023) and Borusyak et al. (2025a). Recentering is straightforward when the shock as-
signment process is known, such as when g is generated by a randomized control trial with some
experimental protocol (conditional on w, or more typically independent from w). The researcher
can draw a large number of counterfactual shock vectors g(j) from this protocol, recompute the pre-
dictor pi(g(j), w) for each j = 1, . . . , J , and average them: 1

J

∑J
j=1 pi(g

(j), w). This approximation
to E [pi(g, w) | w] can then be subtracted from pi(g, w), or controlled for in estimation.20 The same

19Berry et al. (1999) take a similar approach in the context of estimating demand for differentiated products, setting
unobserved product quality shifters to zero when constructing a (non-recentered) instrument. Conlon and Gortmaker
(2020) propose a refinement to this approach, integrating over the empirical distribution of estimated quality shifters
rather than using a single default value.

20While a large J reduces noise in the instrument p(g, w) − 1
J

∑J
j=1 p(g

(j), w), approximating µi with any finite
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steps can be followed in observational data when the elements of g are assumed to be exchangeable
conditional on w, as with the exchangeable policy shocks in Section 2. The counterfactual g(j) can
then be generated as permutations of g, bypassing the challenge of specifying the distribution of the
shocks.21 More generally, g(j) could be drawn from conditional permutations of shocks within—but
not across—groups with the same shock distribution; we illustrate this approach below.22

As Borusyak et al. (2025a) note, recentering requires weaker yet assumptions when pi(·) is linear
in the shocks—as in “shift-share” instrument constructions. In that case, only the expectation of the
shocks matters for E [pi(g, w) | w] and thus needs to be modeled. In cases where that approach to
recentering is more tenable, Borusyak et al. (2025a, Section 3.3) propose approximating a nonlinear
pi(g, w) with its linear approximation around some fixed g = ḡ. This approach yields coefficients
approximating those in the infeasible regressions of Appendix Proposition A2, discussed above. As
with other imperfect predictions of E [xi | g, w], the cost of such simpler recentering is a likely power
loss from the linear approximation.

The third step is to adjust for E [εε′ | w]−1. Per Proposition 3, this involves two feasible ad-
justments: residualizing on (i.e., controlling for) functions of w that predict ε, and weighting by an
estimate of Var [ε | w]−1 (akin to feasible generalized least squares). In non-iid or high-dimensional
settings, both steps may be challenging without a priori restrictions on how the unobserved ε relates
to w. Controlling for arbitrary functions of w may improve efficiency, though this is not guaranteed
(see Appendix C.9 of Borusyak and Hull (2021) for a counterexample). Weighting by a flexible but
noisy estimate of Var [ε | w]−1 may introduce bias, as in conventional settings (e.g., Angrist and
Pischke 2008, p. 69).

A practical alternative is to disregard the third step of Algorithm 1 and just instrument with the
recentered pi(g, w) as an approximation to z̃. This approach has two formal justifications. First,
it is straightforward to show that the unadjusted z̃ has the highest correlation with the treatment
among all recentered IVs:

Lemma 1. z̃ ∈ arg maxz∈R E[z′x]2
E[z′z]E[x′x] .

This result immediately implies that z̃ produces the highest first-stage R2, and so approximations
to it should have favorable power. Second, because of this property, z̃ minimizes the worst-case
estimator variance absent sharp information on the conditional error distribution:

Lemma 2. Let λ̄ ≥ 0 be some constant and let E be the class of random vectors e = (e1, . . . , eN )
′

such that the maximum eigenvalue of E [ee′ | g, w] is bounded by λ̄ uniformly over (g, w). Suppose

number of draws J ≥ 1 is sufficient for identification. To see this, redefine the shocks as g̃ =
(
g, g(1), . . . , g(J)

)
. The

original Assumption 1 implies Assumption 1 with respect to g̃. Moreover, p(g, w)− 1
J

∑J
j=1 p(g

(j), w) is in R redefined
with respect to g̃ because E

[
p(g, w)− 1

J

∑J
j=1 p(g

(j), w) | w
]
= 0 when g | w and g(j) | w have the same distribution.

21Formally, this requires including the permutation class of g in w.
22See Borusyak and Hull (2023) for a discussion of other approaches to recentering, such as using a theory-based

approximation to µi = E [pi(g, w) | w] (as in Abdulkadiroglu et al. (2017)) or using an estimated µi based on first-step
estimates of the shock assignment process.
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the only knowledge a researcher has about ε is ε ∈ E. Then z̃ is approximately minimax, in that:

z̃ ∈ arg min
z∈R

max
e∈E

Var [z′e]
E [z′x]2

.

This result captures the intuition that maximizing the first-stage R2 is optimal when one has weak
priors on the distribution of ε, and worries about making further incorrect adjustments.

4 Application

We illustrate our approach by estimating the private insurance crowdout effects of Medicaid eligi-
bility, using the partial Affordable Care Act (ACA) expansion in 2014. Section 4.1 describes the
setting and adapts our theoretical results to this setting while Section 4.2 presents the results.

4.1 Setting and Estimators

In January 2014, many US states expanded Medicaid eligibility under the ACA to cover non-
elderly adults with incomes up to 138% of the federal poverty level (FPL). This expansion did
not cover all states since a 2012 Supreme Court decision (NFIB v. Sebelius, 567 U.S. 519) let
individual state governors opt out of the more generous ACA coverage level. In practice, expansion
decisions partially followed partisan lines: among the 43 states with less generous Medicaid policies
in 2013, only 8 out of 30 states with Republican governors expanded while 11 out of 13 states with
Democratic governors did.23 Non-expansion states mostly kept their 2013 eligibility rules in place,
though some increased coverage slightly. Expansion states mostly adopted the ACA’s 138% FPL
threshold, though some extended coverage further.

We use state expansion decisions as policy shocks for estimating Medicaid eligibility effects.
To formalize this approach, consider a repeated cross section of individuals i observed in years
t(i) ∈ {2013, 2014} with states of residence s(i). We write i’s Medicaid eligibility, xi ∈ {0, 1}, as:

xi = ht(i)(ci, e
2013
s(i) , gs(i), e

∆
s(i)) (6)

where ci collects relevant individual characteristics (income, work status, and parental status), e2013k

is state k’s Medicaid eligibility policy in 2013, gk ∈ {0, 1} indicates whether or not state k expanded
coverage under the ACA in 2014, and e∆k includes other 2014 changes to Medicaid coverage (i.e.
non-ACA coverage increases or ACA expansions beyond the 138% FPL threshold). These inputs are
sufficient to determine individual i’s eligibility, as formalized by the h2013(·) and h2014(·) functions.24

We assume the expansion shocks are exogenous, conditional on the political party of states’
governors, when estimating eligibility effects in a difference-in-differences setup. Formally, we relate

23See Frean et al. (2017) for more background on the partial Medicaid expansions and related ACA policy changes.
24Here, as in the initial Section 2 motivating example, we assume income (and other characteristics) do not respond

to expansion decisions. In our repeated cross-section, we do not observe pre-period income so cannot apply the
extension at the end of that section.
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individual outcomes to eligibility in the repeated cross section by:

yi = βxi + αs(i) + τt(i) + εi, (7)

where αk and τt are state and time fixed effects. Let q2013k be an indicator for state k hav-
ing a Republican governor in 2013. Following Assumption 1, we formalize shock exogeneity as
E [εi | g, w] = E [εi | w] where g collects the 43 expansion dummies and w collects all ci, s(i), t(i),
e2013k , and q2013k . This assumption is consistent with earlier difference-in-differences analyses that
compare outcome trends of expansion and non-expansion states before and after 2014, adjusting for
state party or other observables (e.g. Averett et al. (2019); Miller and Wherry (2017)). We impose
no assumptions on other coverage changes e∆k , which we collect in u.

Our baseline design assumption is that the shocks are drawn from the same (unknown) distri-
bution among states with the same-party governor. This view of the 2014 expansion decisions, as
arising from a natural experiment, conforms with some earlier analyses (e.g. Black et al., 2019) and
allows us to construct counterfactual g(j) vectors by permuting the shocks conditional on state party.
That is, all g(j) with expansions in some 8 Republican-governor states and some 11 Democratic-
governor states are valid shock counterfactuals. Below we check sensitivity to richer designs, which
allow expansion probabilities to vary by additional state observables.

Following Section 2, we consider two IV specifications using these assumptions. First, we con-
struct a simulated instrument zi = f t(i)

(
gs(i)

)
which only leverages the shock variation. Since

the policy only changes in 2014, we set zi to zero for all individuals in 2013 as well as those in
non-expansion states. For the expansion states in 2014, the instrument measures the change in the
policy generosity. Specifically, it equals the difference in the fraction of the 2014 nationally repre-
sentative sample who would be eligible for Medicaid between two situations: had all states adopted
the ACA’s 138% FLP threshold vs. had all of them kept their 2013 policies intact. Exogeneity of
the expansion shocks and the design assumption make this zi uncorrelated with εi controlling for
state fixed effects, year fixed effects, and the interaction of the state party indicator qs(i) and year.
These controls furthermore make estimation with zi equivalent to instrumenting by the interaction
of gs(i) and a 2014 indicator, as in an instrumented difference-in-differences specification.25

Next, we construct an approximation to the recentered best predictor z̃i by applying the first
two steps of Algorithm 1 to the formula for Medicaid eligibility. In the first step, we predict
eligibility from the exogenous policy shocks g and predetermined variables w, ignoring the non-
ACA eligibility changes in u. In our notation, this involves replacing e∆k with ∅ in equation (6)
which yields a predicted eligibility of pi(g, w) = ht(i)(ci, e

2013
s(i) , gs(i), ∅). Second, we recenter this

prediction by subtracting its expectation µi with respect to the expansion shocks, conditional on
individual characteristics and 2013 policies. Consistent with our design assumption, we account for

25Indeed, given state and year fixed effects, the specific values of the instrument in the four cells (2013 vs. 2014
and treated vs. untreated states) are immaterial as long as zi increases more in 2014 in the treated states.
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differences in expansion probabilities by state party when taking the expectation:

µi ≡ E [pi(g, w) | w] = π(qs(i)) · ht(i)
(
ci, e

2013
s(i) , 1, ∅

)
+ (1− π(qs(i))) · ht(i)

(
ci, e

2013
s(i) , 0, ∅

)
,

where π(0) = 11/13 and π(1) = 8/30 correspond to the fractions of expansion states among those
with Democratic and Republican governors, respectively.

The recentered instrument pi(g, w) − µi equals zero for all individuals in 2013, as well as indi-
viduals in 2014 whose characteristics make them eligible (or ineligible) with or without an ACA
expansion in their state. It only varies among individuals in 2014 whose eligibility is affected by
expansion decisions. We thus restrict estimation to these “exposed” individuals in 2014 and, in
keeping with the difference-in-differences structure, the corresponding group of individuals in 2013
(i.e., those whose characteristics and state of residence would make them exposed to the expansion
shocks in 2014)—what we call the exposed sample. We control for state fixed effects, year fixed
effects, and the interaction of the state party indicator qs(i) and year, as in the simulated IV spec-
ification. With these controls and the restriction to the exposed sample, recentered IV estimation
is again equivalent to instrumenting by the interaction of gs(i) and a 2014 indicator.26

We apply both IV strategies using data from the 2013 and 2014 American Community Surveys,
using representative 1% samples of non-disabled U.S. adults (ages 21-64) residing in the 43 states
eligible for ACA expansion in 2014. Appendix C.1 details the sample construction.

Our primary outcomes are indicators for Medicaid enrollment and for private insurance coverage.
Effects on the former outcome capture takeup of the expanded Medicaid coverage; effects on the
latter outcome capture how Medicaid eligibility crowds out other forms of insurance—an important
policy parameter in the literature (e.g. Frean et al., 2017; Leung and Mas, 2018). We also look at
effects on an indicator for employer-sponsored insurance coverage, which is the most common type
of private insurance and is the focus of the classic literature on Medicaid crowdout (e.g. Cutler and
Gruber (1996)). In our setting, Medicaid may also crowdout private insurance obtained directly
on ACA state health exchanges (as documented by Frean et al. (2017)). This would have different
economic implications, as such crowdout would not typically have employment effects.

4.2 Results

Our recentered IV is much more predictive of actual Medicaid eligibility than the simulated IV.
First-stage estimates in Table 1 show that the simulated IV predicts eligibility with a coefficient of
0.85 and a standard error of 0.11 (column 1) while the recentered IV in the exposed sample has a
higher coefficient of 0.97 and a smaller standard error of 0.02 (column 2); the latter coefficient is
statistically indistinguishable from one, as should be the case with the recentered best predictor.27

26This is because the recentered instrument can be written in the exposed sample as gs(i) × 1 [t(i) = 2014]− π(0)×
1 [t(i) = 2014]− (π(1)− π(0))× qs(i) × 1 [t(i) = 2014] with the latter two terms absorbed by the controls.

27Throughout we report state-clustered standard errors. To address finite-sample concerns with a relatively small
number of states, we report confidence intervals by a wild score bootstrap as suggested by Kline and Santos (2012)
and use them for hypothesis testing. This computationally efficient approach requires inverting bootstrapped test
statistics, which generally makes confidence intervals asymmetric around the IV point estimate.
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Table 1: Medicaid Application: First-Stage Effects on Eligibility

(1) (2) (3)
Simulated IV 0.851 0.032

(0.113) (0.140)
[0.585,1.108] [-0.252,0.479]

Recentered IV 0.972 0.817
(0.015) (0.171)

[0.941,1.014] [0.394,1.161]

Partial R2 0.012 0.799 0.103
Exposed Sample N Y N
States 43 43 43
Individuals 2,397,313 421,042 2,397,313

Notes: This table reports first-stage coefficients for the two instruments described in the text: a
conventional simulated instrument and a recentered prediction of Medicaid eligibility. Columns 1
and 3 estimate regressions in the full sample of individuals in 2013–14, while Column 2 restricts
to the sample of individuals in both years whose characteristics and state of residence make them
exposed to the partial ACA Medicaid expansion in 2014. All regressions control for state and year
fixed effects and an indicator for Republican-governed states interacted with year. State-clustered
standard errors are reported in parentheses; 95% confidence intervals, obtained by a wild score
bootstrap, are reported in brackets. R2 statistics partial out the controls.

The partial R2 for the recentered IV is also dramatically higher (0.80, vs. 0.01 for the simulated IV).
Column 3 of the table shows that just adding the recentered IV to the simulated IV specification
increases the partial R2 meaningfully (to 0.10) and renders the simulated IV coefficient small and
statistically insignificant. All of these results are consistent with the recentered IV giving a better
approximation to the recentered best predictor z̃i.

This improved first-stage prediction translates to meaningful precision gains for the effects of
eligibility on Medicaid and private insurance coverage. Columns 1 and 2 of Table 2, Panel A,
show the standard error is 64% smaller with recentered IV vs. simulated IV (0.010 vs. 0.028)
when estimating the effects of Medicaid eligibility on Medicaid enrollment. For crowdout effects,
which take private insurance coverage as the outcome, standard errors are reduced by 70% (0.007
vs. 0.023; columns 3 and 4) from an insignificant simulated IV estimate to a significant recentered
IV estimate. These estimates incorporate effects from both the conventional crowdout margin of
employer-sponsored insurance as well as crowdout from ACA state health exchanges; in columns 5
and 6 we isolate crowd-out of employer-sponsored plans. Here neither simulated nor recentered IV
yields significant estimates, though the latter is again much more precise.

In economic terms, the recentered IV estimates suggest a total private insurance crowdout rate
of 32.1%, with a 7.2 percentage point increase in Medicaid coverage offset by a 2.3 percentage point
decrease in private insurance coverage. This relative effect, reported in Panel B column 4 as the
coefficient from an IV regression of private insurance coverage on Medicaid enrollment (instead of
eligibility), is similar to the 42% crowd-out that Leung and Mas (2018) find in applying a difference-
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Table 2: Medicaid Application: IV Estimates

Has Medicaid Has Private Insurance Has Employer-Sponsored
Insurance

Simulated IV Recentered IV Simulated IV Recentered IV Simulated IV Recentered IV
(1) (2) (3) (4) (5) (6)

Panel A. Medicaid Eligibility Effects
Eligible 0.132 0.072 −0.048 −0.023 0.009 −0.009

(0.028) (0.010) (0.023) (0.007) (0.014) (0.005)
[0.082,0.198] [0.050,0.094] [-0.127,0.037] [-0.040,-0.008] [-0.057,0.070] [-0.020,0.003]

Panel B. Medicaid Enrollment Effects
Has Medicaid −0.361 −0.321 0.068 −0.125

(0.165) (0.092) (0.111) (0.061)
[-1.156,0.382] [-0.549,-0.119] [-0.494,0.734] [-0.252,0.056]

Exposed Sample N Y N Y N Y
States 43 43 43 43 43 43
Individuals 2,397,313 421,042 2,397,313 421,042 2,397,313 421,042

Notes: Panel A of this table reports second-stage coefficients from the two IV regressions described in the text: one using a conventional
simulated instrument and the other using as an instrument a recentered prediction of Medicaid eligibility. Columns 1, 3, and 5 estimate
regressions in the full sample of individuals in 2013–2014, while Columns 2, 4, and 6 restrict to the sample of individuals whose char-
acteristics and state of residence make them exposed to the partial ACA Medicaid expansion in 2014. All regressions control for state
and year fixed effects and an indicator for Republican-governed states interacted with year. Panel B shows estimates from IV regressions
which use an indicator for Medicaid enrollment as the endogenous variable, instead of an indicator for Medicaid eligibility. State-clustered
standard errors are reported in parentheses; 95% confidence intervals, obtained by a wild score bootstrap, are reported in brackets.
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in-differences specification to the 2014 Medicaid expansion.28 However, we find minimal evidence
for crowdout from employer-sponsored insurance plans even with our more powerful recentered
IV. Instead, our estimates suggest crowdout arises from direct-purchase private insurance via state
health exchanges (implying minimal employment effects). This aligns with the findings of Frean et
al. (2017), who exploit multiple sources of ACA-induced policy variation with a simulated instrument
(see also Courtemanche et al. (2017), Kaestner et al. (2017), and Maclean and Saloner (2019)). For
both private insurance and employer-sponsored insurance, the standard errors of the recentered IV
crowdout parameter estimates in Panel B are around 44% smaller than those of simulated IV.

Importantly, the recentered IV power gains are not a product of the relatively simple simulated
IV specification. Appendix Table A1 shows that adding flexible controls for the individual charac-
teristics which drive exposure to Medicaid expansions (specifically: full interactions of household
income deciles, parental status, work status, and year) has little effect on the point estimates and
standard errors for both estimators. Here the similar power of recentered IV with and without
flexible controls suggests little added benefit from trying to approximate the adjustment for ψ in
the optimal IV after approximating the recentered best predictor.

Three additional checks are presented in the Appendix. First, we check the assumption of
expansion exogeneity with a pre-trend test that replaces the 2013-2014 difference-in-differences IVs
with a comparable 2012-2013 analysis.29 Although with the increased precision of recentered IV we
are able to reject the null hypothesis of no pre-trends, Appendix Table A2 shows that the magnitude
of the placebo coefficient is small (around 0.01–0.02) regardless of the outcome and the instrument.
Second, we check sensitivity to our baseline design assumption by allowing a state’s decision to
expand to depend not only on the governor’s political party but also on the state’s median household
income and the 2012 rate of Medicaid coverage (specifically, by adding as controls a quadratic in
these three state characteristics, interacted with year dummies). Appendix Table A3 shows that
estimated effects of eligibility remain very similar across these specifications. Third, we explore
robustness to using the recentered IV without restricting to the exposed sample. Appendix Table
A4 shows that this approach only yields power gains when the additional demographic controls
(those from Appendix Table A1) or an indicator for being in the exposed sample interacted with
year are included as covariates. We discuss the reason for this in Appendix C.3 by relating it to our
general efficiency theory of Section 3.2.

Large power gains from recentered IV are confirmed in a Monte Carlo study based on our
baseline estimates. Figure 1 plots simulated power curves for the primary Medicaid enrollment

28The corresponding simulated IV specification yields a private insurance crowd-out rate of 36.1%, reported in
Panel B column 3, which is not statistically distinguishable from the recentered IV estimate (p = 0.719). Recentered
and simulated IV also yield statistically indistinguishable estimates for the employer-sponsored insurance outcome
(p = 0.104), reported in Panel B columns 5-6. In contrast, the recentered and simulated IV estimates which use
Medicaid eligibility as the endogenous variable are statistically distinguishable, while they should have the same
estimating according to the theory presented thus far. Appendix C.2 discusses how this pattern can be explained by
measurement error in self-reported income and demographics entering the eligibility calculation. The specifications
which use Medicaid enrollment as the endogenous variable are free from such bias.

29Specifically, we replace 2013 individuals with 2012 individuals and replace 2014 individuals with 2013 individuals.
We continue to construct the endogenous variable and instrument as an individual’s Medicaid eligibility in 2013 and
2014 for comparability, and also keep all controls unchanged.
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Figure 1: Medicaid Application: Simulated Power Curves
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Notes: This figure plots the simulated rejection rates of the two IV regressions discussed in the text:
one using a conventional simulated instrument and the other using as an instrument a recentered
prediction of Medicaid eligibility. See Appendix C.3 for a description of the simulation procedure.
Rejection rates are for nominal 5%-level tests of each coefficient based on wild score bootstraps,
clustered by state. The true effect of zero is indicated by the dashed vertical line. The nominal 5%
level of the tests is indicated by the dashed horizontal lines.
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outcome and the employer-sponsored insurance coverage outcome, while Appendix Figure A1 plots
the simulated estimator distributions (Appendix C.4 details the simulation procedure). In this
controlled environment the true causal effect and the shock assignment process are known, allowing
us to verify that the recentered IV estimator is both close to unbiased and substantially more
efficient than the simulated IV estimator. We find, for example, that the minimum detectable
effects of recentered IV (i.e., the smallest null hypotheses which are rejected by a 0.05-size test with
probability 0.8) are roughly three times smaller than those of simulated IV.

5 Conclusion

Many economic treatments are given by formulas which incorporate multiple sources of variation,
only some of which are exogenous. Rather than discarding the other non-random variation, we show
how it can be used to construct powerful formula instruments. By combining the known treatment
structure with knowledge of the design of exogenous shocks, researchers can construct recentered
instruments which strongly predict the treatment. We show how such recentered best predictors are
formally justified, and how they can be further adjusted to approximate the asymptotically optimal
formula instrument. Empirically, we show substantial power gains from using such instruments to
estimate the takeup and crowdout effects of Medicaid eligibility—with standard errors around half
the size of those from a conventional simulated instrument approach.

Importantly, while we have focused on the popular setting of simulated instruments, the insights
of this paper may apply to a large class of formula treatments and instruments from a variety of fields.
These include linear and nonlinear shift-share instruments, treatments capturing spillovers across
social networks or geography, instruments based on centralized school assignment mechanisms,
“free-space” instruments capturing access to mass media, and treatments or instruments leveraging
weather shocks (Borusyak and Hull, 2021). We expect this class to only increase as researchers find
new and creative ways to exploit exogenous variation in complex treatments.
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A Additional Theoretical Results

Theorem A1. Suppose Assumption 1 holds and E [εε′ | g, w] is a.s. invertible. Then the recentered
instrument

z∗ = E
[
εε′ | g, w

]−1
(
E [x | g, w]− E

[
E
[
εε′ | g, w

]−1 | w
]−1

E
[
E
[
εε′ | g, w

]−1 E [x | g, w] | w
])

.

solves
z∗ ∈ arg min

z∈R
V [z] .

Moreover, for b = E [x | g, w] and A = E [εε′ | g, w],

V [z∗] = E
[
b′A−1b− E

[
b′A−1 | w

]
E
[
A−1 | w

]−1 E
[
A−1b | w

]]−1
.

Proposition A1. Suppose the observations of (yi, xi, εi, gi, wi) are iid across i (with distributions
not changing with N) and that Assumptions 1 and 2 hold with w = (wi)

N
i=1 and g = (gi)

N
i=1.

Suppose further E
[
ε2i | gi, wi

]
= E

[
ε2i | wi

]
as in Theorem 1. Then if β̂ [z∗] is regular and the

sequence (z̃′Ω−1ψ)
2

1+ψ′Ω−1ψ
is uniformly integrable, β̂ [z∗] asymptotically achieves the Chamberlain (1992)

semi-parametric efficiency bound.

For the next result, let RS ⊂ R denote the class of recentered shift-share instruments z =

S(w) · (g − E [g | w]) that are characterized by an N × K matrix S(w) that is measurable with
respect to w.

Proposition A2. Suppose assumptions of Theorem 1 hold and Var [g | w] is a.s. invertible. Let
g̃ = g − E [g | w]. Consider the recentered shift-share instrument

zS = E
[
εε′ | w

]−1
z̃S for z̃S = E

[
xg̃′ | w

]
Var [g̃ | w]−1 g̃.

The associated β̂
[
zS

]
has the smallest approximate variance of all recentered shift-share IV esti-

mators
zS ∈ arg min

z∈RS
V [z] .

B Proofs

B.1 Proof of Proposition 1

The first statement of the proposition has been established by Borusyak and Hull (2023). We
now prove the second statement, focusing for clarity on the case of discrete g, w, and z. The
continuously-distributed case follows similarly, under appropriate regularity conditions.

To show that z has to be a formula instrument, i.e. measurable with respect to g, w, suppose
by contradiction there is an observation ι and values (ḡ, w̄) in the support of (g, w) such that zι
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takes distinct values z̄1 and z̄2 with probabilities πz̄j |ḡ,w̄ > 0, j = 1, 2. Consider the following
data-generating process for ε: εi = 0 for i ̸= ι and

ει =


(z̄1 − z̄2)/πz̄1|ḡ,w̄ g = ḡ, w = w̄, zι = z̄1

−(z̄1 − z̄2)/πz̄2|ḡ,w̄ g = ḡ, w = w̄, zι = z̄2

0, otherwise.

It is straightforward to verify that this ε satisfies 0 = E [ε | g, w] = E [ε | w]. Yet,

E
[
z′ε

]
= (z̄1 · (z̄1 − z̄2)− z̄2 · (z̄1 − z̄2)) · Pr (g = ḡ, w = w̄)

= (z̄1 − z̄2)
2 · Pr (g = ḡ, w = w̄) ̸= 0.

violating (2).
It remains to be shown that z must be a recentered instrument. Consider a different data-

generating process for ε, in which E [ε | w] = E [z | w]. Then

E
[
z′ε

]
= E

[
z′E [ε | g, w]

]
= E

[
z′E [ε | w]

]
= E

[
E [z | w]′ E [ε | w]

]
= E

[
E [z | w]′ E [z | w]

]
̸= 0,

unless E [z | w] = 0 a.s., violating (2) again.

B.2 Proof of Proposition 2

Uniform integrability of 1
N z

′x implies E
[
1
N z

′x
]
→ M . Then, denoting the asymptotic distribution

of rN
(
β̂ [z]− β

)
by D̃ and using the continuous mapping theorem,

rN

1
N z

′ε

E
[
1
N z

′x
] = rN

(
β̂ [z]− β

)
·

1
N z

′x

M
· M

E
[
1
N z

′x
] ⇒ D̃, (A1)

as
1
N
z′x

M

p→ 1, and M
E[ 1

N
z′x]

→ 1. Furthermore, uniform integrability of
(
rN

1
N z

′ε
)2 implies

Var
[
rN

1
N z

′ε

E
[
1
N z

′x
]] = r2NV [z] → V, (A2)

which is equivalent to the Proposition’s claim.

B.3 Proof of Theorem 1 and Appendix Theorem A1

Since Theorem 1 is a special case of Appendix Theorem A1 when E [εε′ | g, w] = E [εε′ | w] a.s., we
focus on the latter.
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First, we confirm that z∗ ∈ R:

E [z∗ | w] = E
[
E
[
εε′ | g, w

]−1 E [x | g, w] | w
]

− E
[
E
[
εε′ | g, w

]−1 | w
]
E
[
E
[
εε′ | g, w

]−1 | w
]−1

E
[
E
[
εε′ | g, w

]−1 E [x | g, w] | w
]

= 0.

Second, we show that E [z′εε′z∗] = E [z′x] for any z ∈ R:

E
[
z′εε′z∗

]
= E

[
z′E

[
εε′ | g, w

]
z∗
]

= E
[
z′
(
E [x | g, w]− E

[
E
[
εε′ | g, w

]−1 | w
]−1

E
[
E
[
εε′ | g, w

]−1 E [x | g, w] | w
])]

= E
[
z′x

]
− 0,

where the last line follows because z is mean-zero conditional on any function of w. Note that
E [z′εε′z∗] = E [z′x] also implies V [z∗] = E [z∗′x]−1.

Following the proof of Theorem 5.3 in Newey and McFadden (1994), let

U =
z′ε

E [z′x]
− z∗′ε

E [z∗′x]
.

Then

E
[
U2

]
=

Var [z′ε]
E [z′x]2

− 2
E [z′εε′z∗]

E [z′x]E [z∗′x]
+

E [z∗′εε′z∗]

E [z∗′x]2

=
Var [z′ε]
E [z′x]2

− 1

E [z∗′x]

= V [z]− V [z∗] ≥ 0,

showing that z∗ minimizes the approximate estimator variance.
It remains to obtain the expression for V [z∗]. We have:

V [z∗] = E
[
z∗′x

]−1

= E
[(
b− E

[
A−1 | w

]−1 E
[
A−1b | w

])′
A−1x

]
= E

[(
b− E

[
A−1 | w

]−1 E
[
A−1b | w

])′
A−1b

]
= E

[
b′A−1b− E

[
b′A−1 | w

]
E
[
A−1 | w

]−1
A−1b

]
= E

[
b′A−1b− E

[
b′A−1 | w

]
E
[
A−1 | w

]−1 E
[
A−1b | w

]]
.
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B.4 Proof of Proposition 3

By the law of total variance, E [εε′ | w] = Ω+ ψψ′. Since E [εε′ | w] is almost-surely invertible, Ω is
also invertible since ψψ′ has a rank of one (assuming N > 1). By the Sherman-Morrison formula,

(
Ω+ ψψ′)−1

= Ω−1 − Ω−1ψ
ψ′Ω−1

1 + ψ′Ω−1ψ
.

Thus:

z∗ =
(
Ω+ ψψ′)−1

z̃ = Ω−1

(
z̃ − ψ′Ω−1z̃

1 + ψ′Ω−1ψ
ψ

)
= Ω−1 (z̃ − ρνψ) .

B.5 Proof of Lemma 1

We have E [z′x] = E [z′E [x | g, w]] = E [z′z̃], where the first equality follows from the law of iterated
expectations and the second equality holds because E [z′E [x | w]] = 0 for any z ∈ R. Thus,
maximizing E[z′x]2

E[z′z]E[x′x] is equivalent to maximizing E[z′z̃ ]2
E[z′z]E[z̃′z̃] . By the Cauchy-Schwarz inequality,

this ratio attains its maximum of one at z = z̃.

B.6 Proof of Lemma 2

Since E [z] = 0,
Var

[
z′ε

]
= E

[
z′εε′z

]
= E

[
z′E

[
εε′ | g, w

]
z
]
.

By standard results in linear algebra,

max
e∈E

z′E
[
ee′ | g, w

]
z = λ̄z′z,

which is achieved when E [ee′ | g, w] = λ̄ zz
′

z′z a.s. Thus, the minimax problem simplifies to

min
z∈R

E [z′z]

E [z′x]2
,

which is equivalent to maxz∈R E[z′x]2
E[z′z] and thus to maxz∈R E[z′x]2

E[z′z]E[x′x] . By Lemma 1, z̃ is a solution.
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B.7 Proof of Appendix Proposition A1

By Proposition 2, V [z∗] is the (rescaled) asymptotic variance of the estimator. We have:

V [z∗] = E
[
z̃′
(
Ω+ ψψ′)−1

z̃
]−1

= E
[
z̃′
(
Ω−1 − Ω−1ψ

ψ′Ω−1

1 + ψ′Ω−1ψ

)
z̃

]−1

= E

[
z̃′Ω−1z̃ −

(
z̃′Ω−1ψ

)2
1 + ψ′Ω−1ψ

]−1

,

where the first line follows from Theorem 1, the second line plugs in the result of Proposition 3,
and the third line rearranges terms.

We next show that this expression asymptotically coincides with E
[
z̃′Ω−1z̃

]−1. Note that

E

[
z̃′Ω−1z̃ −

(
z̃′Ω−1ψ

)2
1 + ψ′Ω−1ψ

]−1

− E
[
z̃′Ω−1z̃

]−1
=

E
[
(z̃′Ω−1ψ)

2

1+ψ′Ω−1ψ

]
E [z̃′Ω−1z̃]

(
E [z̃′Ω−1z̃]− E

[
(z̃′Ω−1ψ)2

1+ψ′Ω−1ψ

])
and, since Var [z̃i | wi] ̸= 0 with positive probability by Assumption 2,

E
[
z̃′Ω−1z̃

]
=

∑
i

E
[

z̃2i
Var [εi | wi]

]
= E

[
Var [z̃i | wi]
Var [εi | wi]

]
×N

→ ∞,

so long as E
[

Var[z̃i|wi]
Var[εi|wi]

]
exists. To establish the result, it remain to show that E

[
(z̃′Ω−1ψ)

2

1+ψ′Ω−1ψ

]
does

not diverge to infinity. This is obvious if ψi = 0 a.s. Otherwise, 1√
N
z̃′Ω−1ψ = Op(1) by the central

limit theorem while 1
N

(
1 + ψ′Ω−1ψ

) p→ E
[
ψ2
i /Var [εi | wi]

]
> 0. Thus (z̃′Ω−1ψ)

2

1+ψ′Ω−1ψ
= Op(1). By

uniform integrability of (z̃′Ω−1ψ)
2

1+ψ′Ω−1ψ
, its expectation converges to the finite expectation of the limit

distribution: specifically, to
E
[
Var [z̃i | wi]ψ2

i /Var [εi | wi]
]

E
[
ψ2
i /Var [εi | w]

] .

Finally, we show that E
[
z̃′Ω−1z̃

]−1 coincides with the semi-parametric efficiency bound in this
setting. Following the notation of Chamberlain (1992), we have a model that satisfies the moment
condition E[ρ(yi, xi, gi, wi, β, h0(wi)) | gi, wi] = 0 where ρ(y, x, g, w, β, τ ) = y− βx− τ and h0(w̄) =
E [εi | wi = w̄]. Chamberlain (1992) shows the efficiency bound is:

J−1
0 = E

[
E
[
D′

0Σ
−1
0 D0 | wi

]
− E

[
D′

0Σ
−1
0 H0 | wi

]
E
[
H ′

0Σ
−1
0 H0 | wi

]−1 E
[
H ′

0Σ
−1
0 D0 | wi

]]−1
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for

D0 = E
[
∂

∂β
ρ(yi, xi, gi, wi, β, h0(wi)) | gi, wi

]
Σ0 = E

[
ρ(yi, xi, gi, wi, β, h0(wi))ρ(yi, xi, gi, wi, β, h0(wi))

′ | gi, wi
]

H0 = E
[
∂

∂τ
ρ(yi, xi, gi, wi, β, h0(wi))

′ | gi, wi
]
.

In our model, D0 = −E [xi | gi, wi] and H0 = −1. Furthermore Σ0 = E
[
(εi − E[εi | wi])2 | gi, wi

]
=

Var [εi | wi] since E
[
ε2i | gi, wi

]
= E

[
ε2i | wi

]
. Hence

J0 =E
[
E
[
E [xi | gi, wi]′ Var [εi | wi]−1 E [xi | gi, wi] | wi

]]
− E

[
E
[
E [xi | gi, wi]′ Var [εi | wi]−1 | wi

]
E
[
Var [εi | wi]−1 | wi

]−1
E
[
Var [εi | wi]−1 E [xi | gi, wi] | wi

]]
=E

[
E
[
(E [xi | gi, wi]− E [x | wi])′ Var [εi | wi]−1 (E [xi | gi, wi]− E [xi | wi])′ | wi

]]
=E

[
Var [z̃i | wi]
Var [εi | wi]

]
,

while as shown above the variance of the optimal IV asymptotically coincides with E
[
z̃′Ω−1z̃

]−1
=

1
NE

[
Var[z2i |wi]
Var[εi|wi]

]−1

, where 1
N reflects the notational difference between the asymptotic variance

(scaled by N) and the approximate variance (not scaled).

B.8 Proof of Appendix Proposition A2

Let Ω = Var [g̃ | w] be the covariance matrix of the shocks and let S∗ = E [xg̃′ | w] Ω−1. For brevity,
we suppress the dependence of S, S∗, and Ω on w.

As with Theorem 1, we follow the proof of Theorem 5.3 in Newey and McFadden (1994). We first
show that E

[
z′εε′zS

]
= E [z′x] for any z ∈ RS : repeatedly using the law of iterated expectations,

E
[
z′εε′zS

]
= E

[
g̃′S′εε′S∗g̃

]
= E

[
g̃′S′E

[
εε′ | h,w

]
S∗g̃

]
= E

[
g̃′S′E

[
εε′ | w

]
E
[
εε′ | w

]−1 E
[
xg̃′ | w

]
Ω−1g̃

]
= trE

[
S′E

[
xg̃′ | w

]
Ω−1g̃g̃′

]
= trE

[
S′E

[
xg̃′ | w

]]
= trE

[
S′xg′

]
= E

[
g′S′x

]
= E

[
z′x

]
,

where the third line imposed the condition E [εε′ | g, w] = E [εε′ | w] from Theorem 1. The rest
follows identically to Theorem 1, as V [z]− V

[
zS

]
= E

[
U2

]
≥ 0 for U = z′ε

E[z′x] −
zS ′ε

E[zS ′x]
.
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C Empirical Appendix

C.1 Sample Construction

Our application uses a repeated cross-section of annual data from the American Community Survey
(ACS; Ruggles et al., 2020). Our main estimates use representative 1% samples from 2013 and
2014; we use an analogous sample from 2012 to estimate pre-trends. We restrict these samples to
non-disabled adults (aged 21-64) residing in one of the 43 states eligible for Medicaid expansion
under the ACA. To define this sample of states we follow Frean et al. (2017) in excluding “early
expansion” states which expanded Medicaid after the ACA but before 2013, as well as Massachusetts
and Vermont which had made all adults with household income less than 138% FPL eligible prior
to the ACA. We also follow Frean et al. (2017) in designating 19 of these states as having expanded
under the ACA in 2014, with 24 not expanding.30

In each year, we classify an individual as insured under Medicaid when they report being covered
by Medicaid or an equivalent government-assistance program, excluding Medicare and Veterans
Affairs insurance. We classify an individual as having private insurance when she is covered by a
plan purchased through an employer or union, or when she purchases this private coverage directly.
We further separate individuals covered by employer-sponsored insurance.

We use the formulas in Frean et al. (2017) to define Medicaid eligibility. Income is given by a
household’s total pre-tax personal income or losses (inctot), adjusted for inflation. Other inputs to
the eligibility calculation include an indicator for whether an individual is a parent (i.e. an adult
with children in the household) and an indicator for whether an individual is in the labor force
(labforce). We note that these may be noisy proxies for the characteristics actual used to assign
Medicaid eligibility.

Our simulated eligibility instrument is constructed by simulating the average Medicaid eligibility
of a representative 10% sample of our analysis data under different state policies. Namely we use
the representative sample to simulate two shares: that of individuals who would be eligible had their
state expanded eligibility in 2014 to everyone under 138% of FPL (24.5%), and that of individuals
who would be eligible if their state kept 2013 policy intact (11.6%). We assign the difference in
these shares to all individuals in 2014 residing in expansion states and zero to all other individuals.

Our recentered instrument is constructed by predicting the actual Medicaid eligibility of each
individual. In 2013 we use actual 2013 eligibility policies, again following Frean et al. (2017). In 2014
we predict eligibility by combining information on the 2013 policies and a state’s decision to expand.
An individual is eligible for Medicaid in 2014 if either she was eligible under the 2013 policies of
her state (whether or not the state expanded eligibility) or if her household income is below 138%
FPL and her state expanded eligibility under the ACA. To compute the expected instrument µi
we first identify individuals who would have been eligible in 2014 if their state expanded but not
otherwise (the “exposed sample”). Outside of this sample the expected instrument in 2014 is simply

30Frean et al. (2017) study coverage effects over 2014-2015, designating 24 states as having expanded during this
time, 21 states as having not expanded, and 6 states as expanding early. We use their classification system as of 2014,
when only 19 of their 24 states have expanded, and additionally exclude Massachusetts and Vermont.
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the individual’s actual 2014 eligibility, while inside this sample the expected instrument in 2014 is
the fraction of states which expanded conditional on the governor’s party. The 2013 expected
instrument is actual 2013 eligibility for all individuals. Political party affiliation of state governors
is determined as of December 2013. In all regressions we control for a Republican governor indicator
interacted with year. In robustness checks we control for other time-interacted state characteristics:
a state’s 2012 median income or share insured under Medicaid (both from the ACS).

C.2 Reconciling Simulated and Recentered IV Estimates

This appendix first discusses how measurement error in Medicaid eligibility calculations can bias
both simulated and recentered IV estimates of eligibility effects. We then show how such bias is
avoided in IV regressions which use Medicaid enrollment as the endogenous variable instead.

For clarity of the theoretical discussion, we simplify the setup. First, we suppose that a single iid
cross-section of 2014 data is available and state fixed effects are not included; we correspondingly
drop the t subscript throughout. Second, we assume that state decisions to expand Medicaid cov-
erage are unconditionally as-good-as-random and mutually independent with the same probability
. We then consider the simple causal model of yi = βx∗i + εi where yi is a measure of insurance
coverage for individual i and x∗i ∈ {0, 1} is i’s true Medicaid eligibility. We suppose changes in x∗i
come from the exogenous expansion of eligibility policy; formally, we write x∗i = x∗i0 + e∗i gi where
x∗i0, e

∗
i , gi ∈ {0, 1} with x∗i0e

∗
i = 0. The x∗i0 indicator identifies individuals who would be eligible for

Medicaid regardless of the binary expansion shock gi, while e∗i indicates those who become eligible
when gi = 1 (i.e. exposed individuals). Individuals who are never eligible regardless of gi are identi-
fied by x∗i0 = e∗i = 0. Rather than observing x∗i0 and e∗i directly, we assume the researcher computes
eligibility xi from a mismeasured xi0 and ei0: i.e., xi = xi0 + eigi where again xi0, ei ∈ {0, 1} and
xi0ei = 0. Such measurement error could reflect error in self-reported household income or demo-
graphics (Brooks, 2019). We assume the as-good-as-random expansion shocks only affect outcomes
by changing eligibility, making them exogenous: gi ⊥⊥ (εi, x

∗
i0, e

∗
i , xi0, ei).

We first show how simulated and IV estimates of β, which use measured eligibility as the
right-hand side variable, are biased by this measurement error. The simulated IV estimate uses
the expansion shock to instrument measured eligibility in the full sample of individuals. This IV
regression identifies

βSIV =
Cov [yi, gi]
Cov [xi, gi]

=
Cov [β(x∗i0 + e∗i gi) + εi, gi]

Cov [xi0 + eigi, gi]

= β
E [e∗i ]

E [ei]
, (A3)

where we use the independence of gi in the third line. The recentered IV estimate of β, implemented
as in Panel A of Table 2, regresses the outcome on measured eligibility in the sample of individuals
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who are exposed according to the observed ei. This estimator identifies

βRIV =
Cov [yi, xi | ei = 1]

Var [xi | ei = 1]

=
Cov [β(x∗i0 + e∗i gi) + εi, gi | ei = 1]

Var [gi | ei = 1]

= βE [e∗i | ei = 1] , (A4)

where we again use the independence of gi in the third line. Since E [e∗i | ei = 1] ∈ [0, 1] and
E [e∗i | ei = 1] = E [e∗i ei] /E [e∗i ] < E [ei] /E [e∗i ] whenever Pr (ei ̸= e∗i ) > 0, these expressions show
that the recentered IV estimand is attenuated relative to both the causal parameter of interest and
the simulated IV estimand: |βRIV | ≤ |β| and |βRIV | ≤ |βSIV |. The simulated IV estimand can
either be larger or smaller than the causal parameter of interest, depending on the relative shares
of true and computed exposure E [e∗i ] and E [ei].

Such bias, however, does not arise when estimating the effects of Medicaid enrollment using either
of the two instruments. This follows because in such IV regressions both the first stage regression (of
enrollment on eligibility) and the reduced form (some outcome, such as private insurance coverage,
on eligibility) have the same proportionate bias given by equations (A3) and (A4), depending on
the instrument.

C.3 Efficiency of Full-Sample Recentered IV Estimates

Appendix Table A4 reports recentered IV estimates of Medicaid takeup and crowdout effects in the
full sample of 2014 and 2013 individuals, not restricting to the exposed sample as in our baseline
specification. Panel B, which includes demographic controls, again finds much narrower confidence
intervals relative to the simulated eligibility instrument. However, excluding these controls in Panel
A yields an intriguing pattern: confidence intervals for the recentered IV are much wider than those
of the simulated instrument.

Here we explain how a combination of two factors generates the discrepancy between panels A
and B of the table. First, the regression residuals are strongly correlated with the indicator for
an individual being exposed to the ACA expansion experiment, which is not controlled for in this
regression. Second, exogenous shocks are assigned at the level of states, which include both exposed
and non-exposed individuals. This discussion reveals why the problem does not arise when focusing
on the exposed sample or when appropriate controls are included. We further relate this problem
to the third step of the instrument construction in Section 3.3.

For clarity of the theoretical discussion, we simplify the setup. First, we suppose that a single
2014 cross-section is available and thus state fixed effects are not included; we correspondingly drop
the t subscript throughout. We allow for other controls to be included. Second, we assume states
only change eligibility as prescribed by their expansion decision, i.e. xi = zi. Finally, we assume
that state decisions to expand are independent with a known propensity E [gk | w] (e.g., as a function
of the state governor’s party). Thus, the recentered expansion indicator g̃k = gk − E [gk | w] can
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be computed without permutations.31 We compare the recentered simulated instrument zSIi to the
recentered best predictor instrument z̃i, ignoring controls that span E [gk | w] (e.g. the state party
indicator).

Under these additional assumptions, using the recentered simulated instrument is equivalent to
using the recentered expansion indicator: zSIi = g̃s(i). The recentered best predictor instrument
only differs by setting zSIi to zero for the non-exposed sample: z̃i = zi − E [zi | w] = fig̃s(i), where
fi is an indicator for individual i being in the exposed group. With xi = zi, the first stage can be
written xi = µi + fig̃s(i), where the expected instrument µi equals 0 for individuals who are not
eligible regardless of gs(i), 1 for those always eligible, and E

[
gs(i) | w

]
otherwise.

We now consider the approximate variances of the two estimators, Var
[
1
N

∑
i z
SI
i ε⊥i

]
/E

[
1
N

∑
i z
SI
i x⊥i

]2
and Var

[
1
N

∑
i z̃iε

⊥
i

]
/E

[
1
N

∑
i z̃ix

⊥
i

]2, where ⊥ denotes the in-sample projection residual on the con-
trol variables (including a constant). We focus our attention on the numerators of these expressions
because the first-stage covariances in the denominator are asymptotically equivalent (and equal in
finite samples without controls).32 For simplicity of exposition we also consider an individual’s state
of residence s(i) as fixed. Letting Nk =

∑
i 1 [s(i) = k] denote the (fixed) number of individuals in

each state k, it can then be shown that

Var
[
1
N

∑
i z̃iε

⊥
i

]
Var

[
1
N

∑
i z
SI
i ε⊥i

] =

∑
k

(
Nk
N

)2
Var [g̃k]E

[
e2RI,k

]
∑

k

(
Nk
N

)2
Var [g̃k]E

[
e2SI,k

] , (A5)

where eRI,k = 1
Nk

∑
i : s(i)=k ε

⊥
i fi is the sum of residuals of exposed individuals in state k (normalized

by Nk), while eSI,k = 1
Nk

∑
i : s(i)=k ε

⊥
i averages over all observations in the state.33

Equation (A5) shows that the recentered IV delivers power gains relative to the simulated
instrument approach whenever the normalized sum of residuals is closer to zero for a typical state,
in the mean-squared sense, when restricting to exposed individuals. The restricted sum has fewer
summands, working in favor of the recentered IV. If the expansion shocks were assigned at the
individual level, without state clustering, this would guarantee that the recentered IV is more
efficient (since eRI,k = eSI,k for exposed individuals in that case).

However, this simplified example shows that the recentered IV is likely to deliver a power loss
when the shocks gk are clustered and ε⊥i is strongly correlated with the indicator of exposed sample
fi (i.e., exposed individuals have systematically different residuals, and fi is not controlled for). To
see this simply, suppose E

[
ε⊥i | fi = 1, w

]
= α ̸= 0 for all i. In this scenario eRI,k is not mean-zero,

31Formally, we assume that w does not include the permutation class of g. Under this assumption, g̃k is independent
across states conditionally on w, simplifying the analysis.

32Namely, since fi is binary, E
[

1
N

∑
i z

SI
i xi

]
= E

[
1
N

∑
i g̃s(i)

(
µi + fig̃s(i)

)]
= E

[
1
N

∑
i fig̃

2
s(i)

]
=

E
[

1
N

∑
i fig̃s(i)

(
µi + fig̃s(i)

)]
= E

[
1
N

∑
i z̃ixi

]
. With controls this equality holds asymptotically, since the differ-

ence between xi and x⊥i is uncorrelated with zSI
i − z̃i = (1− fi) g̃s(i).

33Namely, Var
[

1
N

∑
i z̃iε

⊥
i

]
=

∑
k

(
Nk
N

)2

E
[(

1
Nk

∑
i : s(i)=k z̃iε

⊥
i

)2
]
=

∑
k

(
Nk
N

)2

E
[
g̃2k ·

(
1

Nk

∑
i : s(i)=k fiε

⊥
i

)2
]
=∑

k

(
Nk
N

)2

Var [g̃k]E
[
e2RI,k

]
, since E

[
1
N

∑
i z̃iε

⊥
i

]
= 0, and similarly for Var

[
1
N

∑
i z

SI
i ε⊥i

]
.
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even on average across states, which potentially yields a high mean-squared residual:

E [eRI,k] = E [E [eRI,k | w]] = E

 1

Nk

∑
i : s(i)=k

E
[
ε⊥i fi | w

]
= E

 1

Nk

∑
i : s(i)=k

E
[
ε⊥i | fi = 1, w

]
fi

 = α · E

[∑
i : s(i)=k fi

Nk

]
̸= 0.

The simulated instrument, which does not condition on fi = 1, does not suffer from this problem
since ε⊥i is mean-zero in the sample. Another interpretation of this problem is that in this case the
sums of residuals over the exposed and non-exposed individuals of a given state will tend to have
opposite signs, increasing efficiency of the simulated instrument that uses both subsamples.

The predictions of this discussion are borne out in the data. In Panel C of Appendix Table
A4 we verify that the confidence interval of recentered IV becomes dramatically narrowed with a
single control of fi (interacted with the 2014 dummy appropriately for the difference-in-differences
setting).34 Moreover, demographic controls in Panel B of Appendix Table A4 capture most of the
variation in fi, delivering similar results. Our recentered IV specifications in the main text, by
restricting the sample to the exposed individuals, effectively control for year interacted with fi.

We note that here controlling for the exposed sample indicator is closely related to our third step
in constructing the optimal recentered IV, discussed in Section 3.2: this control happens to play the
role of the predetermined predictors of the residual, ψ. Our application therefore highlights that in
general there is no guarantee of an efficiency gain from improving the first stage with a recentered
IV (i.e., approximating the recentered best predictor) if adjustment for ψ is not feasible.

C.4 Power Simulations

We verify large and robust power gains from recentered IV in a Monte Carlo study, in which the
true causal effect and the shock assignment process are known. We draw 999 counterfactual state
expansion decisions by choosing random sets of 8 Republican- and 11 Democratic-controlled states
as expansion states and use these shocks to compute a counterfactual simulated instrument and
a counterfactual recentered best predictor instrument. We do not specify a model for e∆k , and
instead take the counterfactual best predictor as the endogenous variable. Finally, for the Medicaid
take-up and employer-sponsored insurance crowd-out outcomes we take the second-stage residuals
from Columns 2 and 6 of Table 2, panel A. These outcomes are unrelated to the endogenous
variable by design, corresponding to the true causal effect of zero for all individuals, while keeping
the correlation structure from the actual data. With these generated data, we re-estimate the
simulated and recentered IV specifications as in our baseline implementation in Panel A of Table
2. By design, both sets of estimates should be centered at the true effects of zero, while we expect
the recentered IV procedure to systematically reject a larger set of alternative hypotheses.

34The efficiency of IV specifications that only control for the expected eligibility prediction in columns 2, 4, and 6
of Panel A is lower because this control does not span fi.
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Appendix Figure A1 shows the distribution of simulated and recentered IV estimates for the
two outcomes across Monte Carlo draws. Both estimators are approximately unbiased, with both
distributions in both panels centered around the true effect of zero. However, consistent with
the much shorter confidence intervals in Table 2, the distribution of recentered IV coefficients is
dramatically tighter around this mean. The estimator standard deviation falls from 0.014 to 0.006
as we move from the simulated IV to recentered IV in Panel A, with a larger decline from 0.020
to 0.007 in Panel B. With minimal bias, these correspond to simulated root mean-squared error
reductions of 58.5% and 66.5% with the recentered IV, respectively.

Figure 1 shows that these reductions in estimator variance translate to increased rejection rates
of false null hypotheses for both outcomes, while also suggesting the wild bootstrap 95% confidence
intervals in Table 2 have approximately correct size. Away from the true null hypothesis of zero
the recentered IV power curve is much more steeply sloping, with uniformly higher rejection rates.
With the Medicaid take-up outcome, for example, the recentered IV is found to reject coefficients
outside the range of [−0.018, 0.017] with probability of at least 0.8, while the simulated IV only has
such high power outside a nearly three times as long range, of [−0.042, 0.056]. For the employer-
sponsored insurance crowd-out outcome this contrast in minimum detectable effects is even starker,
at [−0.022, 0.018] for the recentered IV versus [−0.073, 0.051] for the simulated IV.
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Figure A1: Medicaid Application: Simulated Estimator Distributions
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Notes: This figure plots the simulated distributions of the two IV regression discussed in the text:
one using a conventional simulated instrument and the other using as an instrument a recentered
prediction of Medicaid eligibility. See Appendix C.3 for a description of the simulation procedure.
The true effect of zero in both panels is indicated by the dashed vertical line.
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Table A1: Medicaid Application: Second Stage-Estimates with Additional Controls

Has Medicaid Has Private Insurance Has Employer-Sponsored
Insurance

Simulated IV Recentered IV Simulated IV Recentered IV Simulated IV Recentered IV
(1) (2) (3) (4) (5) (6)

Panel A. Medicaid Eligibility Effects
Eligible 0.135 0.073 −0.050 −0.024 0.003 −0.008

(0.029) (0.010) (0.022) (0.007) (0.013) (0.005)
[0.082,0.224] [0.050,0.095] [-0.112,0.001] [-0.042,-0.008] [-0.039,0.037] [-0.019,0.005]

Panel B. Medicaid Enrollment Effects
Has Medicaid −0.372 −0.334 0.023 −0.108

(0.146) (0.091) (0.097) (0.060)
[-0.767,0.008] [-0.566,-0.121] [-0.238,0.322] [-0.235,0.081]

Exposed Sample N Y N Y N Y
States 43 43 43 43 43 43
Individuals 2,397,313 421,042 2,397,313 421,042 2,397,313 421,042

Notes: Panel A of this table reports second-stage coefficients from the two IV regressions described in the text: one using a conventional
simulated instrument and the other using as an instrument a recentered prediction of Medicaid eligibility. Columns 1, 3, and 5 estimate
regressions in the full sample of individuals in 2013–2014, while Columns 2, 4, and 6 restrict to the sample of individuals whose charac-
teristics and state of residence make them exposed to the partial ACA Medicaid expansion in 2014. All regressions control for state and
year fixed effects, an indicator for Republican-governed states interacted with year, and full interactions of deciles of household income,
parental status, work status, and year. Panel B shows estimates from IV regressions which use an indicator for Medicaid enrollment as
the endogenous variable, instead of an indicator for Medicaid eligibility. State-clustered standard errors are reported in parentheses; 95%
confidence intervals, obtained by a wild score bootstrap, are reported in brackets.
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Table A2: Medicaid Application: Pre-Trend Estimates

Has Medicaid Has Private Insurance Has Employer-Sponsored
Insurance

Simulated IV Recentered IV Simulated IV Recentered IV Simulated IV Recentered IV
(1) (2) (3) (4) (5) (6)

Panel A. Baseline Specification
Eligibile 0.022 0.020 −0.015 −0.011 −0.011 −0.007

(0.009) (0.004) (0.017) (0.004) (0.017) (0.005)
[-0.002,0.042] [0.009,0.029] [-0.069,0.026] [-0.020,-0.003] [-0.058,0.028] [-0.019,0.004]

Panel B. With Additional Controls
Eligibile 0.023 0.020 −0.019 −0.014 −0.016 −0.011

(0.010) (0.004) (0.014) (0.004) (0.016) (0.005)
[-0.012,0.040] [0.009,0.027] [-0.056,0.020] [-0.022,-0.006] [-0.051,0.031] [-0.023,0.001]

Exposed Sample N Y N Y N Y
States 43 43 43 43 43 43
Individuals 2,400,142 425,112 2,400,142 425,112 2,400,142 425,112

Notes: This table reports pre-trend estimates for the two IV regressions described in the text: one using a conventional simulated
instrument and the other using as an instrument a recentered prediction of Medicaid eligibility. Pre-trend estimates come from the IV
specifications described in the text replacing 2013 individuals with 2012 individuals and replacing 2014 individuals with 2013 individuals.
Columns 1, 3, and 5 estimate regressions in the full sample of individuals, while Columns 2, 4, and 6 restrict to the sample of individuals
whose characteristics and state of residence make them exposed to the partial ACA Medicaid expansion in 2014. All regressions control for
state and year fixed effects and an indicator for Republican-governed states interacted with year. The regressions in Panel B additionally
control for deciles of household income, interacted with indicators for parental and work status and year. Conventional state-clustered
standard errors are reported in parentheses; 95% confidence intervals, obtained by a wild score bootstrap, are reported in brackets.
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Table A3: Medicaid Application: Alternative Designs

Has Medicaid Has Private
Insurance

Has Employer-
Sponsored
Insurance

(1) (2) (3)
Panel A. Republican Governor and 2012 Median Income
Eligible 0.077 −0.018 −0.005

(0.011) (0.008) (0.006)
[0.053,0.094] [-0.040,0.002] [-0.018,0.011]

Has Medicaid −0.231 −0.067
(0.101) (0.070)

[-0.541,0.027] [-0.216,0.176]

Panel B. Republican Governor, 2012 Median Income, 2012 Medicaid Coverage
Eligible 0.076 −0.023 −0.009

(0.011) (0.007) (0.005)
[0.053,0.102] [-0.040,-0.007] [-0.021,0.003]

Has Medicaid −0.304 −0.125
(0.096) (0.058)

[-0.546,-0.099] [-0.256,0.048]
Exposed Sample Y Y Y
States 43 43 43
Individuals 421,042 421,042 421,042

Notes: This table adds additional controls to the recentered IV regressions in Table 2. The re-
gressions in both panels add 2012 state median income interacted with year and the Republican
governor control. The regressions in Panel B additionally control for 2012 state Medicaid coverage
rates interacted with year, the Republican governor control, and 2012 state median income. State-
clustered standard errors are reported in parentheses; 95% confidence intervals, obtained by a wild
score bootstrap, are reported in brackets.
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Table A4: Medicaid Application: Recentered IV Including Non-Exposed Individuals

Has Medicaid Has Private Insurance Has Employer-Sponsored
Insurance

Recentered Controlled Recentered Controlled Recentered Controlled
(1) (2) (3) (4) (5) (6)

Panel A. Baseline Controls
Eligible 0.032 0.072 0.193 0.061 0.208 0.071

(0.085) (0.038) (0.290) (0.123) (0.301) (0.127)
[-0.433,0.148] [-0.072,0.128] [-0.214,1.796] [-0.123,0.526] [-0.204,1.907] [-0.118,0.565]

Panel B. With Demographics × Post
Eligible 0.116 0.116 −0.029 −0.030 −0.018 −0.019

(0.012) (0.011) (0.013) (0.012) (0.012) (0.012)
[0.092,0.149] [0.093,0.148] [-0.052,0.003] [-0.051,0.002] [-0.040,0.012] [-0.040,0.011]

Panel C. With Exposed Sample × Post
Eligible 0.094 0.093 −0.012 −0.013 −0.005 −0.006

(0.011) (0.011) (0.015) (0.016) (0.017) (0.018)
[0.064,0.118] [0.059,0.118] [-0.039,0.034] [-0.041,0.038] [-0.034,0.047] [-0.037,0.052]

Exposed Sample N N N N N N
States 43 43 43 43 43 43
Individuals 2,397,313 2,397,313 2,397,313 2,397,313 2,397,313 2,397,313

Notes: Panel A of this table reports second-stage coefficients from versions of the recentered IV regressions in Table 2, estimated in the
full sample of individuals in 2013–14. Columns 1, 3, and 5 use as an instrument a recentered prediction of Medicaid eligibility while
Columns 2, 4, and 6 do not recenter but control for the expected prediction. All regressions control for state and year fixed effects and
an indicator for Republican-governed states interacted with year. The regressions in Panel B additionally control for deciles of household
income, interacted with indicators for parental and work status and year. The regressions in Panel C instead add the interaction of
year and an indicator for an individual having characteristics that make them exposed to the partial ACA Medicaid expansion in 2014.
State-clustered standard errors are reported in parentheses; 95% confidence intervals, obtained by a wild score bootstrap, are reported in
brackets.
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