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Abstract

We develop a new approach to estimating flexible demand models with exoge-
nous supply-side shocks. Our approach avoids conventional assumptions of
exogenous product characteristics, putting no restrictions on product entry,
despite using instrumental variables that incorporate characteristic variation.
The proposed instruments are model-predicted responses of endogenous vari-
ables to the exogenous shocks, recentered to avoid bias from endogenous char-
acteristics. We illustrate the approach in a series of Monte Carlo simulations.
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1 Introduction

Many economic analyses depend on accurate estimates of the demand for differentiated products.
Prominent examples from the field of industrial organization (I0) include measuring welfare effects
of mergers or new products and testing models of firm conduct; trade economists similarly use de-
mand estimates to measure welfare effects of new tariffs and gains from trade or internal migration.
Often, these analyses leverage structural models of demand that allow for rich and realistic sub-
stitution patterns—such as the mixed multinomial logit model popularized by Berry et al. (1995).
To estimate these models with market-level data, researchers need multiple instrumental variables
(IVs) that address the endogeneity of prices and other terms capturing the substitution patterns.
This paper develops a new approach to constructing powerful instruments for popular demand
models by leveraging a set of exogenous supply-side shocks (for brevity, “cost shocks”) like input
price changes, new taxes or subsidies, markup regulations, or certain productivity and ownership
shocks. Such shocks are increasingly found in empirical applications, where they serve as a nat-

1 However, even when plausibly exogenous cost shocks are available,

ural instrument for price.
researchers typically identify the parameters governing substitution patterns (so-called “nonlin-
ear” parameters) using other IVs constructed from observed characteristics of competing products.
Prominent examples include nest size instruments in nested logit models, “BLP instruments” which
average or sum the characteristics of a product’s competitors, and more sophisticated versions like
the efficient IVs of Berry et al. (1999) and the differentiation IVs of Gandhi and Houde (2020).
Such instruments rely on the econometric exogeneity of product characteristics: a strong assump-
tion that is often inconsistent with natural models of product entry (Ackerberg and Crawford, 2009;
Petrin et al., 2022). Characteristic-based IVs can also be weak, and lack across-market variation
when all markets have the same products (Reynaert and Verboven, 2014; Nevo, 2001).2

We propose instruments that combine product characteristics and cost shocks in a particular
way: to predict the response of the demand model’s endogenous variables to the exogenous shocks.

” of exogenous

These IVs are motivated by thinking of the model as structuring “spillover effects,’
changes to product prices on the market shares of other products. For example, the nested logit
model structures spillovers with a parameter o that governs whether, when prices exogenously
rise, consumers substitute primarily to local competitors in a product’s nest or more evenly to all
unaffected products in the market. To distinguish between those cases and thus identify o, we
propose instruments which predict how a product’s within-nest market share changes in response
to a set of cost shocks. A simple IV in this spirit is the the cost shock of a product less the
average shock in its nest. We show how such IVs can be generally constructed from first-order
approximations to model-implied responses, yielding shift-share instruments with cost shocks as
the exogenous “shifts.” We also propose a novel instrument construction from exact model-based

predictions. We build intuition for these constructions in mixed logit models by considering in-

!Examples include Berry et al. (1999) and Goldberg and Verboven (2001) (exchange rate shocks), Li (2016)
(subsidies), Miller and Weinberg (2017) (merger shocks), and Nakamura and Zerom (2010) (productivity shocks).

2BLP instruments are sometimes also used to estimate the price sensitivity parameter, when cost shocks are not
available. Armstrong (2016) studies the weak instrument problem that arises in that context.



struments constructed to predict the impact of shocks via small “nonlinear” parameters (i.e., in a
“local to logit” approximation, similar to Salanie and Wolak (2022)).

Instruments constructed this way are generally complex formulas of the exogenous cost shocks
and the likely endogenous product characteristics. To avoid bias from the latter, we follow Borusyak
and Hull (2023) in recentering the IVs: i.e., subtracting their expectation over the data-generating
process of exogenous shocks. For example, a researcher may simulate this process by permuting
observed shocks across comparable products; she could then recenter any formula IV by subtracting
from each product’s instrument value the average value across these counterfactual shocks, holding
the characteristics of all products fixed. When the instruments are constructed from first-order
approximations (i.e. as shift-share IVs) recentering is simpler as it only requires specifying and
adjusting for the conditional mean of the shocks. In general, recentering ensures our IVs derive
their validity only from the exogeneity of cost shocks—even though they also derive power from
product characteristics.

We formalize this approach in a broad class of demand models, which includes both conventional
mixed and nested logit from IO as well as analogous constant elasticity of substitution (CES) models
from trade. We focus on estimating the parameters that govern own- and cross-price elasticities,
which are central to many important policy counterfactuals. Consistency of recentered IV estimates
follows when there are either many uncorrelated markets or many uncorrelated shocks that can
affect multiple markets jointly while inducing sufficient across-product variation in the instruments.
Unlike conventional characteristic-based IVs, our instruments can yield consistent estimates when
all markets have the same products and product fixed effects are included. Asymptotic normality
of our estimators follows with many market clusters; we further extend results in Adao et al. (2019)
and Borusyak et al. (2022b) to show how many-shock asymptotic inference can be conducted with
shift-share instruments. We characterize the asymptotically efficient recentered IVs, building on
Chamberlain (1987, 1992), Newey and McFadden (1994), and Borusyak and Hull (2025). While
our baseline analysis shows how powerful recentered IVs can be derived for a given demand model,
we also consider non-parametric identification by building on Berry and Haile (2014). Notably, our
approach applies even when the same products are sold in all markets and product fixed effects are
included, as in Nevo (2001); characteristic-based IVs have no variation in those settings.

We compare this approach to conventional ones in a series of Monte Carlo simulations based on
the data-generating process in Gandhi and Houde (2020). When characteristics are exogenous, the
power of recentered instruments—whether derived from first-order approximations or exact model-
based predictions—is comparable to that of Differentiation IVs and much better than that of BLP
instruments. Expectedly, recentered IVs have less power with a lower variance of cost shocks while
the power of characteristics-based [Vs is lower with less variation in choice sets across markets.
A simple model of strategic product entry introduces significant bias in characteristic-based IV
estimates, while recentered IV estimates remain accurate.

This paper contributes to two main literatures. First, we contribute to an IO literature studying

demand estimation without exogenous characteristics. The potential bias from endogenous charac-



teristics has been noted as far back as Berry et al. (1995). Existing solutions to this concern broadly
fall into two categories: some papers put additional structure on the model unobservables (i.e., the
unobserved taste shifters) by assuming characteristic endogeneity is captured by controls (e.g.,
product fixed effects in Nevo (2001)) or imposing a particular statistical process for the unobserv-
ables (e.g., Sweeting (2013) and Moon et al. (2018)). Other papers explicitly models characteristic
choice or product entry (e.g., Crawford et al. (2019) and Petrin et al. (2022)).> In contrast, our
approach places no restrictions on how the model unobservables relate to observed characteristics
and does not require a model of entry, relying only on cost shock exogeneity. This solution relates
to an idea in Ackerberg and Crawford (2009) of searching for “orthogonal instruments” to identify
own- and cross-price elasticities while leaving the relationship between characteristics and taste
shifters unidentified. We propose a concrete way to achieve this goal, via recentered functions of
exogenous cost shocks and endogenous characteristics.*

Second, we contribute to a recent econometrics literature on identification and estimation with
shift-share I'Vs and other “formula” instruments combining exogenous shocks with other potentially
endogenous data (Borusyak et al., 2022b, 2024; Adao et al. 2019; Borusyak and Hull, 2023, 2025).
While this literature studies linear causal or structural models, we focus on nonlinear demand
estimation. In this sense our work is also related to Adao et al. (2023) who identify parameters of a
quantitative spatial model by the responses of endogenous variables to exogenous shocks; Borusyak
et al. (2022a) follow a similar approach with a migration model. Notably, both of these papers work
with linear approximations of their models—introducing inaccuracies when shocks are large—while
we work directly with nonlinear demand models.”

Recent complementary work by Andrews et al. (2025) shows that recentered instruments are
more robust to demand model misspecification than characteristic-based IVs, in the sense of recov-
ering more interpretable causal estimands in a non-parametric potential outcomes framework. We
demonstrate a different advantage of recentered IVs: that they can be used to relax the assump-
tion of exogenous characteristics in a given demand specification. Moreover, we propose specific
constructions of powerful recentered IVs tailored to a class of demand models.

Finally, our analysis relates to empirical studies using weighted sums or other transformations of
shocks as instruments to estimate demand models. Recent examples include Costinot et al. (2016),
Adao et al. (2017), Couture and Handbury (2020), Fajgelbaum et al. (2020), Adao et al. (2022),
Barahona et al. (2023), and Adéao et al. (2024); see also Fujiy et al. (2024) who estimate input
demand by firms. Typically these instrument constructions arise from intuitive arguments instead

of being derived as model-implied responses to the shocks, limiting their power. Moreover, while

3See also Fan (2013), who builds BLP-type instruments for a firm’s endogenous characteristics from particular
characteristics of the firm’s competitors: namely, consumer characteristics in markets where competitors operate.

1A larger literature improves mixed logit demand estimation in other ways, maintaining the assumption of exoge-
nous characteristics. See, e.g., Berry et al. (1999), Reynaert and Verboven (2014), and Gandhi and Houde (2020) on
IV power, Salanie and Wolak (2022) and Lu et al. (2023) on alternative estimation methods, and Wang (2023) on
allowing for non-parametric distributions of random coefficients.

5Adao et al. (2024) develop a similar approach to specification testing that applies to nonlinear models, but they
do not propose an estimation procedure.



the constructions are sometimes simple enough to not need recentering, this consideration is also
not typically part of the formal analysis. We show in a general setting how powerful instruments
can be constructed by leveraging the structure of the model, and how instrument validity may be
made more credible and transparent via explicit recentering.

The rest of this paper is structured as follows. Section 2 builds intuition for our approach in
a simple nested logit demand model with randomized cost shocks. Section 3 develops our general
approach and discusses asymptotic properties. Section 4 illustrates the approach with simulations.

Section 5 concludes. All proofs are collected in the appendix.

2 Motivating Example: Nested Logit with Random Cost Shocks

We start with a simple example that illustrates the main logic of our approach as well as its
advantages over conventional methods. Here we keep the presentation informal and intuitive,

leaving formal assumptions and results for the more general analysis in Section 3.

2.1 Setting and Conventional Instruments

Consider a set of markets m, each with a set of differentiated products j € J,, and an outside
good j = 0. The products are grouped into “nests” n(j); let d;j, = 1[n(j) = n] denote mutually
exclusive nest indicators. A researcher observes the nest allocation, along with the price p;,, and
quantity share sj,;, of each product. Finally, the researcher observes a set of shocks g;, which
increase products’ marginal costs (e.g., via input prices) but do not directly affect demand.

The researcher correctly assumes that market shares arise from a nested logit demand model: a
mass of consumers ¢ in each market choose a single product or the outside good to maximize their
utility wijm = apjm + jm + €ijm, where &, is a common taste shifter and &;;,, is an idiosyncratic
taste shock that can be correlated across products in a nest. The outside good has a zero price and
taste shifter, such that utility from it is w;gm = €ijom. Conditional on the prices and taste shifters,
the idiosyncratic shocks (gijm) jegmu{o} are distributed across consumers in such a way that the

market shares satisfy:

log (sjm/Som) = apjm + o log (sjm/sn(j)m) + &im, (1)

where sg,, is the market share of the outside good in market m and s, is the total market share
of products in nest n and market m.% From this equation the researcher is interested in estimating
a < 0, which determines the own-price sensitivity of demand, and o € [0,1) which captures the
extent of within-nest correlation in the taste shocks that governs substitution patterns. These two
parameters determine the matrix of cross-price elasticities, which is a key input to a variety of
policy counterfactuals (e.g., merger analyses) and consumer welfare calculations.

Estimating o and o generally requires finding two instruments which are uncorrelated with

SAppendix A.1 gives the formula for nested logit market shares and derives this expression from it. The nested
CES model, commonly used in international trade and spatial economics, implies similar expressions; see Section 3.5.



the unobserved taste shifters £j,,, but correlated with the two endogenous variables in equation (1):
price pjm, and the log within-nest market share log(s;,/ sn(j)m). Here price endogeneity likely arises
because more popular products (with higher £;;) are likely of higher quality and therefore more
expensive to produce; firms may moreover optimally charge higher markups for them. Endogeneity
of 1og(8jm/sn(jym) further arises from the market shares’ direct dependence on the taste shifters:
i.e., more popular products will have larger within-nest market shares.

A natural instrument for the own-price sensitivity parameter « is the excluded cost shock g,
since higher costs are predicted to at least partially pass through to higher prices.” To justify this
choice simply, suppose the g;,, are drawn in a randomized trial after product entry. Randomization
and the natural exclusion restriction that the cost shocks do not directly affect demand ensure that
g;jm is a valid instrument for equation (1), i.e. that Cov [gjm,&jm] = 0.8

It is more difficult to find an instrument for the substitution parameter . One popular strategy
is to construct instruments from the observed characteristics of other products, such as the nest
indicators dj,. In particular, in nested logit models, it is common to use the number of products
in j’s nest, Ny(jy, = D oke 7. Qen(y) (or, equivalently, the number of other products excluding j;
e.g., Goldberg and Verboven (2001), Town and Liu (2003), Miller and Weinberg (2017)). This
instrument is expected to predict log (sjm / sn(j)m) because a product with a larger number of
“local” competitors in its nest should have, on average, a smaller within-nest share.

Such characteristic-based instruments have at least two drawbacks. First, their validity hinges
on the econometric exogeneity of the characteristics: a strong assumption that can be at odds
with natural models of product entry. For example, the nest size instrument will be invalid (with
Cov [Nn(j)m,fjm] > 0) when firms introduce more products in nests for which consumers have
a higher preference in a particular market—a natural tendency of profit-optimizing firms with at
least partial information on consumer tastes (see, e.g., Aguiar and Waldfogel (2018, p.506)). Even
if the instrument is based on the product entry by firms other than the producer of j, it is not
econometrically exogenous. Second, such instruments have no useful variation in some common
empirical contexts. Specifically, IV,

n(j)m
sold in all markets and product fixed effects are included (as is commonly done since Nevo (2001)).

and similar instruments cannot be used if all products are
Given these issues, we look for different instruments.

2.2 Proposed Instruments

Consider an IV that measures the relative cost shock of product j vs. the average shock in its nest:

Z dkn YGkm - (2)

J)m k€T m

Zim = 9jm —

"We attribute an instrument to a particular endogenous variable informally; technically both instruments jointly
identify both parameters when they are valid.

8Throughout, we call instruments “valid” when they are uncorrelated with the model error (i.e., the unobserved
taste shifter). We consider an instrument’s relevance, i.e. its correlation with endogenous variables, separately.



We next explain why zj;,, is both relevant and valid, and how it exemplifies our general approach
to constructing instruments as certain combinations of exogenous cost shocks and potentially en-
dogenous characteristics (here, nest indicators) of all the products in the market.

First, this instrument is likely relevant (i.e., correlated with log (s;m/ sn(j)m)): if product j’s
local competitors in its nest have relatively low cost shocks, its within-nest market share is expected
to be lower. This intuitive argument has a formal backing: z;,, approximates the model-predicted
response of the endogenous variable log (sjm / sn(j)m) to the exogenous shocks. Specifically, consider
a hypothetical scenario in which all products have equal prices P, = 79 and unobserved taste
shifters &, = 0, and thus all products within the nest have the same market shares. To this
scenario we introduce an exogenous component of price variation, prm, = Prm + Tgrm for some
auxiliary constant 7 % 0 that aims to capture the pass-through of cost shocks into prices in a simple
way. Nested logit demand characterizes the share response to this set of price changes; Appendix
A.1 shows that, in a first-order approximation that is precise for small shocks, the resulting change
in log (sjm / sn(j)m) is equal to zj,, up to a constant scaling factor. While cost shocks is only one
of the reasons why log (sjm / sn(j)m) deviates from equal shares, zj, captures the component of
variation in the within-nest shares due to the cost shocks and is thus likely relevant.

Second, zjm is a valid instrument (i.e., E[2jm&jm] = 0) when the cost shocks are exogenous
in the sense we previously assumed to justify their use as an instrument for «. This claim is
nontrivial because the formula for zj, incorporates not only the cost shocks but also the nest
dummies, which are likely econometrically endogenous. Nevertheless, z;,, is constructed in such
a way that its validity stems only from the exogeneity of the shocks only. Intuitively, when cost
shocks are random, it is also random whether the shock for a particular product is higher or lower
than the average in its nest. Formally, z;,, is a recentered instrument, meaning its expectation

over draws of the shocks is zero conditional on the other variation (Borusyak and Hull, 2023):

1
E [ij | (kn)ke gn| = Elgjm] — No(jym
randomly. Thus, z;,, is guaranteed to be uncorrelated with any function of the nest allocation which

> ke, Uen()Elgkm] = 0 when cost shocks are drawn

could create endogeneity problems. Other formula instruments can be adjusted via a recentering
procedure that removes the component correlated with the characteristics—as we soon illustrate.
To recap, our proposal is to construct instruments as recentered model-based predictions of
how relevant endogenous variables respond to the cost shocks. This general approach suggests
three ways of improving the simple z;,,, instrument, in the sense of likely power gains, by forming
better predictions of the endogenous variable. First, consider an exact model-based prediction of
log (sjm/ sn(j)m) from the price predictions (Pxm)yc 7, in place of the first-order approximation in

Zjm- Appendix A.1 shows this prediction can be written:

_ & a
log (sjm/sn(j)m) = Eﬁgjm — log Z din(j) €XP <1 — &ngm> ) (3)
keTm

where & and & are some preliminary estimates of @ and o and 7, as before, is an estimate of



9

the pass-through of cost shocks into prices.” Unlike zj,,, exogeneity of the cost shocks does not

make this prediction a valid instrument; instead, like the conventional nest size instrument Ny, (j),,,
its validity also hinges on the econometric exogeneity of the nest allocation. To see this simply,
note that E)Tg (sjm/sn(j)m) varies over products even in the absence of cost shocks (grm = g
for all k). In fact, this variation is driven exactly by nest size: plugging in gg, = pg for all k
yields l?)?g (sjm / sn(j)m) = —log Ny (j)m, showing that this prediction suffers from exactly the same
endogeneity concerns as the conventional nest size instrument.

Following Borusyak and Hull (2023), we propose obtaining valid instruments by recentering
model-based predictions like (3), using knowledge of how the exogenous shocks are drawn. Recen-
tering is straightforward when the shocks are drawn randomly in an experiment: the researcher
can re-draw many sets of counterfactual shocks from the experimental protocol, recompute the
prediction under each set, average across shock counterfactuals to measure the expected prediction
(ujm = E [ﬂg (sjm/sn(j)m) | (dk”)kejm,n} in the case of (3)), and subtract this expectation from

the actual prediction.!? Like Zjm, the recentered prediction

exact

25598 = log (m/Sn(jym) — Him (4)

is a valid instrument regardless of any econometric endogeneity of the nest allocation. Below we
discuss other ways to recenter predictions in observational data, where the shock data-generating
process is unknown. Although recentering removes some variation in the prediction, which was not
necessary with zj,, starting from a better prediction still improves the first-stage (Borusyak and
Hull, 2025). Note that inaccuracy of the initial (¢v,5) estimates in equation (3) is not an issue for
the validity of z?,’if‘:t, given recentering, though it will likely affect power.

A second type of improvement comes from using additional data to better predict the endoge-

nous variables’ responses to exogenous shocks. One particularly useful input is the market shares

s?fi and prices pg’;i for the same products and the same market in an earlier period, before the
shocks gi,, were drawn. To the extent that prices and taste shifters are serially correlated, this
yields better predictions of prices and market shares in the period of interest.!! The instrument
that results from incorporating this information is also very intuitive: Appendix A.1 shows that
the first-order approximation of the model-predicted response of log (sjm / sn(j)m) to the exogenous

shocks around the pre-period shares (rather than equal shares) yields

pre
weighted Ekejm dkn(j)skmgkm 5
m — Yym — Z d ] Spre ( )
kETm “kn(j)°km
Like zj,, this prediction is mean-zero over draws of random cost shocks, E [z}vn?ghted | (din) e jm,n} =

9Preliminary estimates &, & can be obtained using simpler instruments, such as (2), in a first step, while 7 can be
obtained from a regression of prices and the own-product shocks. In Section 3 we show how a continuously updating
estimator can bypass the need for &, .

10We note that 1jm is related but not equal to the value of z;,, with no shocks, —log Nn<j)m. The difference arises
because z;nm, is a nonlinear function of the shocks, and thus taking the expectation of z;,, across the shock distribution
is not the same as plugging in expectation of the shocks.

1A second complementary use of such data is that equation (1) can be estimated in time-differences, yielding more
precise estimates from the same instruments when &, is serially correlated. We discuss this approach in Section 3.4.



0, making it a recentered instrument without further adjustment.'? The appendix further shows
that the two improvements can be combined: a researcher can incorporate the lagged share informa-
tion to improve the recentered exact prediction (4), too. In either case, the recentered instrument
will again be valid just by virtue of the exogenous shocks—even though it now draws power from
variation in lagged market shares (as well as the nest allocation) and lagged market shares by
themselves need not be exogenous.'3

Finally, consider an instrument which uses a more realistic prediction of how prices respond
to the full set of exogenous shocks. A researcher might, for example, specify an auxiliary pricing
model which captures not only the pass-through of product j’s cost shock to its own price but also
how pjm, responds to competitor cost shocks g, for & # j (depending, for instance, on whether
j and k are offered by the same firm). Substituting this model’s price predictions into any of the
above instrument constructions, in place of the simple p;,, = 7g;jm, prediction, yields an instrument
which is likely more powerful when such cost shock spillovers are important and can be estimated.
The better price prediction can also be recentered and used in place of gj, as an instrument

exact

for identifying . Note that as with the initial (&, ) estimates in 2§, the validity of these

instruments does not hinge on the accuracy of the pricing model.

3 General Approach

We now consider a broader class of demand models and formalize our general approach. Section
3.1 develops the baseline mixed logit model and the introduces key shock exogeneity assumption.
Section 3.2 defines recentered IVs and establishes identification with them. Section 3.3 develops our
proposal for constructing powerful recentered IVs from the structure of the model, while Section
3.4 establishes consistency and asymptotic inference. Section 3.5 discusses several extensions to the

baseline model.

3.1 Setting

We consider a class of random utility models—canonical mixed logit demand—with market-level
data as in Berry et al. (1995); see Berry and Haile (2021) and Gandhi and Nevo (2021) for more
recent treatments. A researcher observes a set of markets m (which might correspond to regions,
periods, or both) with differentiated products j € Jp,, prices pjm,, and quantity shares sjm.M Each

product also has a vector of observed characteristics x;,, € R% (which includes an intercept), as

12 im and Z;V;‘Lighmd are examples of shift-share instruments, which average the exogenous shocks with a set of
weights capturing differential shock exposure (Borusyak et al., 2022b). As discussed below, such instruments are
often easier to recenter or require no recentering at all because they are linear in the shocks.

13We note that, unlike the nest size IV, z;, and zjv-flighted have cross-market variation even if all products are sold

. ighted .
in all markets—so long as cost shocks vary across markets. Moreover, zﬁi‘g €% can vary across markets even if cost

shocks do not, if the pre-period shares vary due to any unobserved cost or taste differences.
14Here we do not restrict whether the data consist of many markets or just a single one, whether the markets are
randomly sampled, or whether the number of products per market is large. We return to these issues in Section 3.4.



well as an unobserved scalar taste shifter £;,,. All variables are normalized such that the outside
good in each market, 7 = 0, has pom, = &om = 0 and zg,, = 0.

Consumers ¢ choose among all products and the outside good by maximizing their utility:

L1
max  djm + NoiPjm + 0T ime + Eijm- 6
eTi0) im T T0iPjim ;nﬂ Gml ijm ( )

Here product j’s mean utility d;,, is determined by its price, characteristics, and the taste shifter:
Sjm = aPjm + B'Tjm + &jm (7)

with @ < 0 and 8 € RLY. A subvector of characteristics :US% = (Zjmi,- .-+ TjmL,), as well as
(potentially) price, also enter utility with mean-zero “random coefficients” n; = (n;¢) 5:10 that capture
heterogeneous consumer preferences. This 7; is #id across consumers and follows distribution P (+; o)
that is known up to a vector of “nonlinear” parameters o (typically Gaussian with independent
components and standard deviations oy, ..., o, ). Finally, €, is an extreme-value shock, #id across
consumers and products including the outside good. Integrating out these shocks implies market

shares satisfy
L
exp <5jm + 10iPjm + 320ty niijm4>

L+ ey, €xXp (5km + N0iPkm + ZZL:H mﬂkme>

S = S p) = [ aP(rio),  (8)
where bold symbols denote a collection of variables for all products in the market: v,, = (vjm)j T
for any variable vj,,. The distribution P determines the patterns of product substitutability:
for instance, the pure multinomial logit model corresponds to no variation in random coefficients
(typically captured by o = 0). The nested logit model considered in Section 2 is also a special case,
with nest dummies as characteristics and with a particular choice of P(:;0) (McFadden, 1978).
Berry (1994) and Berry et al. (1995) famously show that the share function S;(d,;0, w%),pm) is

invertible, such that mean utilities can be derived from ¢ and observed data:
5jm = D] <Sm;0', ZC%), m> N (9)

for functions D;(-) that generally do not have a closed-form but can be computed numerically.
We focus on estimating parameters § = («,0’)’, which are central to a number of important
policy counterfactuals that do not involve changing product characteristics. Indeed, the model
implies that own- and cross-price elasticities can be characterized in terms of § and observed data:
dsjm .
——— = [ (a+no)sji (L[] = k] — si) dP (n;;0) (10)
dpkm

where
1
exp (Dj (Sm; o wgn),Pm> + NoiPjm + Zngll W%‘m)

. .
1+ > e, eXP (Dk (Sm; o, wgn)’pm> + 0iPkm + S0 Wfﬂkmg)

sz' =

In contrast, a consistent estimate of the causal effect of characteristics on mean utility, 3, is not

needed when analyzing a merger (Ackerberg and Crawford (2009)). Similarly, the welfare gains



from a new product can be computed without 3.
To identify 6 we leverage share inversion, which implies a structural equation that is additive

in the unobserved taste shifter:
Dj <3m§ g, x%),pm) = aPjm + 6/xjm + gjm-
This representation permits estimation of 6 from moment conditions of the form
E [Zj : (Dj (sm;a, $£,}L),pm> — QPjm — B’:zjmﬂ =0 (11)
for some vector of instruments Zj,, that are uncorrelated with &j,,. If the instruments are also
uncorrelated with z,, (as ours will be), equation (11) will hold for any value of £3.

To build instruments, we assume the researcher observes a set of supply-side shocks g;, that vary
by product and market. Shocks to input prices is a natural source of supply-side shocks commonly
used in the IO literature (e.g., Villas-Boas (2007), Backus et al. (2021), Barahona et al. (2023));
other studies have used exchange rate shocks (e.g., Berry et al. (1999); Goldberg and Verboven
(2001)), shocks from weather (as a productivity shifter; e.g., Nakamura and Zerom (2010)), product-
specific subsidies (e.g., Li, 2016), taxes (e.g., Dearing, 2022), and markup shocks due to mergers
(e.g., Miller and Weinberg, 2017).16 We generically call the gjm “cost shocks” and assume that

they are exogenous in the following sense:

E [Ejm ‘ gmvmm] =E [fjm ‘ mm] Vm,j € jm (12)

That is, we assume the taste shifter of each product j is mean-independent of cost shocks (both
for j and its competitors), conditionally on the observed characteristics of all products.

To understand the economic content of the assumption, note that the unobserved taste shifter
captures both objective characteristics of the product chosen by firms and the subjective preferences
of consumers. Thus, several conditions have to be met for equation (12) to hold. First, cost shocks
should not affect product entry decisions or firm choices of unobserved characteristics. A sufficient
condition is that cost shocks are realized after those decisions have been made (but before prices are
set—a condition required for relevance of cost shocks as instruments). Second, cost shocks should
not influence consumer preferences. Such influence could be possible when cost shocks influence
firms’ advertising decisions or stem from the prices of inputs that affect consumer earnings.

In addition to these exclusion restrictions, cost shocks may not be correlated with variables that
affect product entry or consumer preferences. This can be viewed as an independence condition, in
the sense of Imbens and Angrist (1994), that is automatically satisfied in randomized experiments.

Examples from the literature show how it can also hold in observational data. Several 10 papers use

15While such gains require a prediction of the new product’s mean utility, naturally based on its characteristics,
this constitutes a prediction problem and not a causal problem which would require the structural parameter 5. We
are not aware of previous work making this point.

16WWe do not require the shocks to be independent across products and markets. For instance, all cars produced in
the same country are assigned the same exchange rate shock, and input price shocks affect all products using this
input, to different extents. For now we assume that the researcher can assign each product to the corresponding
country of production or shares of different inputs but we relax this assumption in Section 3.5.
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the exchange rate in the country of production as a cost shock for automobiles (e.g., Berry et al.,
1999; Goldberg and Verboven, 2001; Grieco et al., 2024) and other industries (e.g., Nakamura and
Zerom, 2010). While these studies use the level of the exchange rate, their changes over time
may be particularly attractive as the g;,, because exchange rates are known to roughly follow a
random walk (e.g., Kilian and Taylor (2003)). The same argument applies to many commodity
price changes, for goods using these commodities as inputs (e.g., coffee in Nakamura and Zerom
(2010)). For inputs traded on futures markets, Ackerberg and Crawford (2009) point out that the
difference between the realized input price at the time when downstream firms set prices and the
price of a futures contract at the earlier moment when product entry has been decided is guaranteed
to be unrelated to the characteristics.

While the assumption in (12) is restrictive, it is important to highlight what it does not entail: it
allows unobserved taste shifters §;,,, to be arbitrarily correlated with the observed characteristics of
both product j and its competitors.!” This is in contrast to the prevalent approach in the literature

(e.g., Berry et al., 1995, 1999; Gandhi and Houde, 2020) which imposes a stronger assumption:

E [fjm | wmagm} = 07 (13)

equivalent to imposing E [{, | @] = 0 in addition to equation (12). Under this stronger condition,
instruments constructed as functions of own and competing products’ characteristics are valid. This
includes BLP instruments, computed as sums or averages of competitor characteristics, efficient
instruments from Berry et al. (1999), as well as the differentiation IVs of Gandhi and Houde (2020)
which capture the average distance between z;,, and characteristics of competitors or the number
of products in the market with characteristics sufficiently close to zj,.

As recognized as far back as Berry et al. (1995), however, the econometric exogeneity of observed
characteristics is an unappealing restriction on product entry. It is often arbitrary which objective
characteristics are observed or unobserved by the econometrician, such that there is no reason
why the two groups should be uncorrelated with each other.'® Moreover, in natural models of
product entry, j,, can be related to characteristics of competing products. This can happen, for
instance, when all firms observe some information about the cost or demand conditions common
to the market when making product entry decisions. Similar to the discussion in Section 2, in a
market where consumers like small and fuel-efficient cars (i.e. their j,, is predicted to be higher),
we expect all firms to pivot towards these characteristics, whether in ways observed or unobserved
to the econometrician. In this situation, BLP and differentiation IVs need not be valid.

In the rest of our analysis we maintain a modified version of (12) that allows shock exogeneity

to be conditional on some other observed data g, (as well as product characteristics):

Assumption 1 (Exogenous cost shocks). E [€jm | G Tm, @) = E[Eim | ®m, a,,], YM, 5 € T

'7An additional feature of (12) is that it allows the cost shocks to be mutually correlated. Mutual correlations
of taste shifters are also allowed, as when unobserved market-level demand and cost conditions affect the choice of
unobserved quality of all firms in the market.

¥Note, however, that it is generally necessary for characteristics with random coefficients to be observed. An
interesting exception is provided by Adao et al. (2017) who show identification in a model with a random coefficient
on unobserved mean utility; our approach applies to that model as well.
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Both condition (12) and Assumption 1 hold when the shocks are unconditionally as-if randomly
assigned; the modified assumption will then be helpful to construct more powerful instruments that
use information in gq,, (e.g., lagged market shares and prices as in Section 2). In other settings,
conditioning on potential confounders in g,, may help make shock exogeneity more plausible, such

as when the g, are systematically correlated with some observed g;,.

3.2 Recentered Instruments

We say Zj, is a vector of formula instruments when it can be written as Zjn, = fjm(9m, Tm, q,,)
e Tm" We further say that Zj,,

consists of recentered formula instruments (or just recentered IVs) when the formulas satisfy:

for some non-stochastic and known vector-valued functions (fjm)

Our first result shows this property characterizes the complete set of valid instruments in our setup:
Lemma 1. Assumption 1 implies E [Z;,Ejm] = 0 if and only if Zj,, consists of recentered IVs.

This result follows immediately from Proposition 1 in Borusyak and Hull (2025).1? It shows that
when researchers are only willing to assume that cost shocks are exogenous, in the sense of As-
sumption 1, the only justified instruments are recentered IVs. More positively, it shows that any

candidate formula instrument A jm (g, Tm. gy,) for some functions (hjm),, ;e 7 can be made a valid

m,
IV by recentering: i.e., by subtracting off its conditional mean E [h;, (gm,];m, a,,) | Tm,q,,)-
Borusyak and Hull (2023) and Borusyak et al. (2024) discuss several strategies for recentering
formula instruments. One general approach follows when it is possible to generate a set of coun-
terfactual shock vectors gﬁf), for c =1,...,C, which are either drawn from the same distribution
as g,, (conditional on x,, and g,,) or otherwise as likely to have been realized. For example, the
g,(ﬁ) could be generated by redrawing from the same randomization protocol that generated g,,, in
a randomized trial, as in the Section 2 motivating example. In observational data, the counter-
factual shocks can instead be generated by reshuffling the set of observed g, across comparable
products, markets, or both. Given such gfﬁ) , any formula instrument hjm(9,,, Tm,q,,) can be re-
centered by recomputing instrument values under each counterfactual (holding fixed «,, and g,,)

and subtracting the average across these values, % D hjm(gffl)

T, q,,), for each j and m.?20 A
second general approach follows when the formula instrument is linear in the shocks: i.e., when
P (Goms Tms Q) = Dopes,, WikmJkm for some exposure weights (or “shares”) wjm, that are func-
tions of (xm,,q,,). Recentering such shift-share IVs only requires de-meaning the cost shocks (or
“shifts”) by their conditional expectations, E [gkm | Tm, @m)]-

Lemma 1 implies that a recentered IV vector Zj,, locally identifies model parameters 6 under

197 ike there, the “only if” part of Lemma 1 should be understood as follows: unless Zjm consists of recentered
instruments, it is possible to find a conditional distribution of £;» such that Assumption 1 holds but E [Z;m&;m] # 0.

20The number of counterfactuals C' does not matter for recentered IV consistency, though it generally affects the
asymptotic variance. See footnotes 19 and 21 in Borusyak and Hull (2023).
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a rank condition (Rothenberg, 1971): that the matrix E [ijv;m} is full column rank, where

Vim = % (Dj (sm;a, m%),pm> — OPjm — ﬁ/mjm) = < _Vijm ) , (15)
jm

for V7, = 0D; (sm; o, mﬁ}),pm> /0o with the derivative evaluated at true parameter values.?! Note
again that 6 is identified while 3 is not, since recentering makes Z;,,, uncorrelated with x;,,. But this
is unimportant since 8 does not directly enter price elasticities or important policy counterfactuals.

We next discuss how likely powerful IVs can be constructed.

3.3 Constructing Model-Based IVs

We propose constructing recentered IVs that predict how the vector of model’s residual derivatives
V jm responds to the exogenous cost shocks. Specifically, we consider an instrument vector of length
dim(#) approximating:

Zim = E[Vjm | Gms Tms @) = E [Vim | T, @] - (16)
The first term of ij is the best predictor of the residual derivatives given the cost shocks,
product characteristics, and other data in g,,, where the expectation is taken over the condi-
tional distribution of (p,,, Sy, ) that corresponds to different realizations of unobserved demand and
cost shocks. The second term recenters this best predictor by its expectation over the shocks,
E[E[Vim | Gms Tm> @l | Zm> @m] = E[Vim | ®m, q,,]. Hence Zj, captures how the model resid-
ual’s derivative is affected by the specific draw of shocks. Note that this ij is guaranteed
to satisfy the rank condition when cost shocks are relevant (i.e. when ij # 0) since then
E [Z]mv;m} =E [ZJmZ]’m] which is generally fully rank.?? Below we show ij is closely related
to the asymptotically efficient recentered IV vector.

The overall logic of our approximations to ij is as follows. Instead of integrating over the
unobserved shocks, we predict V,, in a single “no-shock” scenario that would prevail in the absence
of unexpected g,,, shocks, i.e. when g,, = Elg,,, | m, q,,]. This scenario is constructed using the
data in (z,, g,,,) only. We then predict how prices and shares would deviate because of the realized
shocks. Specifically: cost shocks affect prices and the researcher can construct an unexpected
component of prices using an auxiliary model of cost shock pass-through, as in Section 2. In turn,
prices affect market shares; using preliminary values of demand parameters, the researcher can
then measure the impact of unexpected price changes on shares. Finally, 0D;/0c is a function of
the shares so it can be predicted for the scenario with shocks, as a function of (g,,, Zm,q,,). To

approximate ij, it then remains to recenter this prediction as in Section 3.2.

21 As Newey and McFadden (1994) note, establishing global identification with nonlinear moment conditions is
generally challenging; the objective function for mixed logit estimation is known to not be globally convex (Conlon
and Gortmaker, 2020).

*Formally, E [ijv;m} =E [ijIE [Vim | Gm> Tm, qm]'} =E [ijZ]'-m} by the law of iterated expectations and

the fact that E [ijE [Vim | m, qm]'} = 0 by virtue of recentering.
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The IV construction proceeds in four steps. First, the researcher picks some preliminary values
of the parameters & < 0 and &. For now, we view these as non-stochastic though it is without loss
to allow them to be functions of (%, q,,). We discuss in-sample estimation in Section 3.4.

Second, the researcher constructs the no-shock scenario which comprises of a prediction of prices
and shares (p,,, ) based on the information in (x,,q,,) only. With panel data and persistent
cost and demand shocks, a natural choice is the prices and shares in a period prior to the realization
of the g,,, shocks (collected in g,,,). In a single cross-section, predicted prices and mean utilities may
be the fitted values from regressing prices and D; (sm; g, m%), pm> on characteristics, respectively,
while predicted shares may follow from the model (i.e., equation (8)) at the parameters & and
implied mean utilities.??

Third, the researcher forms price predictions as deviations from p,,, due to the exogenous cost-

shocks. For clarity here we work with the simplest predictions:
ﬁjm = ﬁjm + 7vrgjma (17)
where Gjm = gjm —E [gjm | m,q,,] is product j’s recentered cost shock and 7 # 0 is a pass-through
coefficient that is again assumed non-stochastic or measurable with respect to (x,,q,,), for now.
These predictions need not be correct for the resulting instruments to be valid, as in Section 2. We
consider extensions with more elaborate shock pass-through models below.
The price prediction immediately suggests the first instrument (recall equation (15)): —7Gjm,

or equivalently the recentered shock g;,,. The price prediction also implies a prediction for mean

utilities that will shortly prove helpful:
3jm = Sjm + d(ﬁgjm for 5jm = Dj <ém§ 5’, w,ﬁ,ll),j)m) .

Finally, the researcher generates predictions for the market shares and ultimately V7, . We
propose two versions: a first-order approximation which yields a recentered shift-share IV, and
an exact prediction that may yield a more powerful instrument but generally requires further

recentering. Using the first-order approximation, one predicts market shares as

=§jm = gjm + Z (r%imsj(sma g, mg}b)vpm) (Skm - Skm)

kETm
~ a 5 %) D YT q
= Sjm + Z %Sj(énﬁ o, ;p%),pm)aﬂgkm
k€ETm

230ne could also include recentered shocks in these regressions to improve predictive power but take fitted values
corresponding to the characteristics only. Nonlinear predictions, such as with machine learning algorithms, may
improve precision, too.
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and the model residual’s derivative with respect to the vector o as

2
@{T _VU -+ S 0, $%)7Vm (ﬁm_ﬁm)
im kezj: Oprmdo 7 ( ) b Tk
2
kE€Tm T
= VU + Z wjkmgkm (18)
k€ETm

Here v?m = 8@1) (é i 0, x%), pm) predicts the residual’s derivative in the absence of shocks and

82
) (1) =
Wikm = apkmaap <sm,0 xz,,, m)
0? ) 5
2 5 , 1) &
+ Qi E ask/ 9 (sm, s Pm ) 85km8k (Om; 0,2, D) (19)

is the predicted first-order effect of g, on that derivative. Recentering the prediction in (18)

eliminates the first term, resulting in the dim(#) x 1 vector of shift-share instruments

SSIV _ —TGjm
ZkEJm wjkmgkm
Again, an advantage of Z Jsﬂfl V' is that it only requires specification of the conditional shock means
Elg,, | m, q,,] for recentering. Also conveniently, the choice of 7 is immaterial with this approach,
as it only rescales the instruments. Without a random coefficient in price the first term in equation
(19) drops out, making & immaterial too.
Alternatively, the researcher can obtain the exact prediction of how changes in mean utilities

due to the cost shocks affect shares:
and how those changes affect V7

. 0 . .

Vin = 550 (5072l B

This V” is a nonlinear function of the shocks which needs to be recentered, generally by specifying

shock counterfactuals as described in Section 3.2.24 The recentered formula IV vector is then:

Vi, —E [V” | wm,qm}

24This @;’m relates to the efficient IV construction of Berry et al. (1999): the two would be equivalent if the price
predictions pj.,, were taken from an equilibrium pricing model and mean utilities were set to &-m = &Pjm + B':cjm for
an initial value 8 of 8. Our instrument differs in three ways: it is based on a shock pass-through model that need
not be correct, it uses additional information (in particular, when lagged prices and shares are available), and it is
recentered to avoid bias from endogenous characteristics. Conlon and Gortmaker (2020) propose an improvement on
the Berry et al. (1999) instrument that integrates over an empirical distribution of &;,, rather than setting unobserved
demand shocks to zero. Our approach could be similarly extended.
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Appendix Proposition A1 builds intuition for these instruments by considering the case where
the nonlinear parameters o are the standard deviations of random coefficients and & is close to zero,
which would correspond to a pure multinomial logit model.?> In this “local-to-logit” approximation,
the shift-share IV corresponding to the standard deviation o of a non-price characteristic z ¢ can

be written, up to a scaling factor, as:

SSIV § N L §
Zimt A Tjme - E Skm (Thkme — Tme) Gem  fOT Tppg = § SkmThme-

k€ETm k€Tm
This IV an interaction between product j’s own characteristic z,,¢, and a market-specific aggregate
of the shocks: the share-weighted covariance across the products in the market between g, and
the recentered cost shock (including the outside good with a shock set to zero). The covariance is
positive when the cost shocks unexpectedly make products with high x,,, more expensive relative
to other products in the market. Thus, zf;gév
differences: it compares changes in market shares for high-z,,, vs. low-z,,¢ products in markets

is performing an analysis similar to difference-in-

where high-zp,,¢ vs. low-zp, products became less competitive because of the exogenous cost
shocks. Identification with this instrument is therefore based on the core property of mixed logit
models: that, after a cost shock, market shares are reallocated towards products with similar
characteristics when oy is large, but to all products evenly (in proportion of their market shares)
when ¢ = 0. The instrument for the random coefficient in price has additional terms related to

how cost shocks affect prices directly; see Appendix A.2.

3.4 Estimation and Asymptotics

We use a generalized method of moments (GMM) procedure to estimate 6. Specifically, we gener-

alize the moment condition (11) to write:
E [ij (é,fr) . (Dj (sm;a, a:ﬁ,l”pm> — apjm — Bj(Tm, @ 7 é))} =0, (20)

where Zj, (9, 7?) is a vector of recentered instruments of the same dimensionality as 6, constructed
as above, now with the dependence on preliminary parameter values (é,fr) made explicit. The
Bji(Tm, a7 9) term is included to reduce residual variation in the error Zjy, = 8’ jm +&jm. Since
recentered IVs are uncorrelated with any function of (x,, q,,), the moment conditions (20) hold at
the true parameter values regardless of B;(-) and for any .

Two examples of Bj(-) are illuminating. First, it can be set to 7'z, with v estimated as a
projection coefficient (i.e., from regressing the estimate of =, on x;,,). While v need not coincide
with the causal effect of characteristics on demand, (3, this is not a problem for many important
policy counterfactuals (as discussed in Section 3.1). Second, in panel data, one can set B; to be the
lagged value of =j,, obtained from the lagged prices and shares using the initial parameter values,

0 (and with no additional parameters, v = ()). This corresponds to estimating the model “in

25GQalanie and Wolak (2022) use an approximation of mixed logit around o = 0 to simplify share inversion and
estimation. Our proof of Appendix Proposition Al offers a new derivation that yields additional intuition, discussed
in Appendix A.2.
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differences,” as commonly done in linear models and sometimes also for nonlinear demand models
(e.g., Adao et al. (2017)). Such differencing helps reduce residual variation when the unobserved
demand shifters are strongly serially correlated.

Our baseline estimator is the (6,4) that solves the sample analog of condition (20), averaging

across product-market pairs, along with the sample analog of a moment condition for ~:

E N : (DJ (sm,a, x,, ,pm> — apjim — Bj(Tm, @ 7 0)) =0. (21)

This condition defines 7 as the coefficient giving the least-squares fit of Zj,, on Bj(Zm,q,,;7,0)

(e.g. a projection on zj,, in the above linear case). It can be understood in the same way as how,
in regression analyses of randomized control trials, predetermined controls are included to soak up
residual outcome variation with the coefficients on them not interpreted causally. Here we assume
the researcher has obtained initial values of 6 by, say, an initial GMM procedure with g;, and
conventional characteristic-based IVs as instruments. The researcher has also obtained an initial
pass-through constant 7, for example from least-squares estimation of pj,, = 7o + TGjm + €jm-

We also consider a “continuously updating” estimator which, unlike the baseline estimator, does
not require initial values of §. This estimator replaces § in the moment conditions (20)—(21) with
6; that is, the instruments Z;,, (and, if applicable, the B; term) are updated when searching for
the parameter estimate.? We use this estimator in our simulations, below. Another alternative is
to use a two-step or iterative GMM procedure.

Consistency and asymptotic normality of these estimators follow from standard GMM theory
(e.g. Newey and McFadden (1994, Theorems 2.6 and 3.1)) when there are many iid markets m (or,
more generally, many #id market clusters: e.g., in a panel with many regions and a small number
of time periods). In other cases, such as when there are only a few markets or when across-market
linkages create dependences in the instruments and GMM residuals, asymptotic properties can be
established from many 7id shocks g, (or, more generally, many éid shock clusters) following Adao
et al. (2019), Borusyak et al. (2022b), and Borusyak and Hull (2023). This strategy is helpful, for
instance, when the markets represent regions and the shocks arise from exchange rate fluctuations,
which affect all regions at once. Other shocks can affect the demand for similar products across
multiple regions, too. We develop this approach in a setting where v = ) (e.g. the differencing

case discussed above), Z;,, consists of shift-share instruments, and the preliminary values (9, ) are

26We use the term “continuously updating” differently to the standard continuously updating estimator, where it
refers to the choice of the GMM weighting matrix. That choice is not relevant to our just-identified setting.
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non-stochastic.2” The estimator § then solves:

0= Z Z Z Wikm3km (Dj (Sm;f?, fﬂﬁ),Pm) — pjm — Bj(mm,qm,é)>

m je€Im \kE€EITm

=Y > GkmRim(0) (22)

m k€Tm

where Ry (0) = > ieTm Wikm (Dj (sm;&,w%),pm) — Qpjm — Bj(asm,qm,é)) is an “aggregated”
shock-level residual in the sense of Addo et al. (2019) and Borusyak et al. (2022b).2® Equation
(22) represents 0 as the solution of a “shock-level” GMM procedure, with an estimable variance
of > > ke, GkmRrm(0) given many did shocks or many shock clusters that allow for shock
correlations across markets. Standard GMM expressions can then be applied, as before, regardless

of the correlation structure in the residual D; (sm; o, wg),pm) — apjm — Bj(Tm, q,,,0) across both
products and markets. Convergence of 6 only requires the shocks to induce sufficient variation
across product-market pairs in the I'Vs.

Results on the asymptotic efficiency of recentered IVs for linear structural equations, devel-
oped by Borusyak and Hull (2025), can also be extended to characterize the optimal IV matrix,
Z = <Zj7ln>m,je\7m
conditions, it takes the form:

without assuming many independent markets. Under appropriate regularity

Z*=E[¢€¢ |x,q]  (E[V]g,x,q ~E[V|z4q),

where § = (§jm)m,j€\7m, V= (V;m)mjej , and v = (vy,),, for any variable v. The inner term

in parentheses stacks the recentered best predictors of the model’s residual derivatives, ij. The
recentered predictor is then adjusted by E [£¢' | x, q]_l, which can be understood as combining a
partial residualization of Zj,, on E[¢ | z,q] and a reweighting by Var [¢ | ,q]™" (see Proposition
3 in Borusyak and Hull (2025)). This characterization provides further motivation for our focus
on approximating ij as well as for the adjustment for Bj(wm,qm,é) in (20), as a proxy for
E [&m | 2, q], in estimation. Weighting by an estimate of the residual’s inverse variance, as in

feasible generalized least squares, is less popular in practice and not pursued here.

3.5 Extensions
We now develop several extensions of the baseline model. We consider them one by one to avoid

notational clutter, but in practice they can be combined.

Observed Consumer Characteristics. In some applications, the researcher observes the dis-

tribution of consumer characteristics in each market and allows these consumer characteristics

2TFor recentered instruments that do not have a shift-share structure, Borusyak and Hull (2023) provide sufficient
conditions for consistency in linear IV settings. Adapting them to our current setting is left to future work. No
general asymptotic inference results are currently known for such instruments, even for linear IV settings.

% Note that we include the “price instrument” —7#g;m as a shift-share IV here, with w;g, = —#1[j = k].
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correlate with tastes for product characteristics in mﬁ). Our results extend immediately to that

case. Specifically, the consumer with characteristics ¢; = (cir)ﬁzl solves:

R L1 R
max 5jm + (Z YroCir + 771'0) Pjm + Z (Z YreCir + 7’2'6) Time + Eijm,

JETmU{0} —1 =1 \r=1

where v = (7,4) serve as additional nonlinear parameters and extreme-value shocks &;j,, are in-
dependent from (c¢;,7;). The distribution P, (-;0) of (¢;,n;) is known: typically ¢; is assumed
independent of 7; with the market-specific distribution taken from the data. Again, the model is
invertible (see, e.g., Gandhi and Nevo (2021)), and the rest of the analysis goes through without

change.

Using Lagged Prices and Shares with Product Entry and Exit. When lagged prices and
shares are available, our baseline recommendation is to use them as (p,,, 8,,) when constructing
the instruments. This approach requires a modification when some products have recently entered
the market and their lagged information is not available. Moreover, if many products have exited,
lagged shares may be a poor prediction of the current period’s share in the absence of cost shocks.

In such cases, our proposal is to predict prices pj,, and mean utilities 5jm for all products in
the current period and construct shares from them, as 3, = S; (Sm; g, a:ﬁ,l,),pm). For continuing
products, lagged price can serve as pj,,, while mean utility can be obtained from the inversion of
lagged shares, given ¢. For new products, one may proceed as in a single cross-section, taking
fitted values from regressions of realized price and implied mean utility D; (sm;é,m%),pm> on

characteristics.

Identification of 5 via Instruments for Product Entry. Our baseline analysis assumes that
the g,,, shocks do not affect the characteristics of available products, which leaves the causal effect
of characteristics on mean utility, 8, unidentified. This is in contrast to the price coefficient o which
is identified because price is affected by the shocks and the researcher is able to construct a relevant
recentered instrument, 7g;,,. If the researcher has access to shocks that affect some characteristics
in a predictable way, those characteristics can be treated in the same way as the baseline model

treats price, and the corresponding components of 8 become identified.

Incorporating a Pricing Model. Our baseline analysis focuses solely on demand estimation,
leaving the supply side flexible. Although we require an auxiliary model of cost shock pass-through,
it need not be correct and is indeed very simple in our baseline proposal. This modular approach
has the advantage that demand can be estimated with fewer assumptions. However, some coun-
terfactuals, such as a merger between two firms, require predicting how prices would change, and
thus taking a stand on how firms set prices. In that case, the researcher may consider leveraging
the pricing model to obtain more powerful—albeit less robust—demand estimates, too, as in Berry
et al. (1995). While we leave the technical presentation to future drafts, this extension should be

straightforward.
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Estimated Mapping from Inputs to Products. Our baseline analysis assumes that the cost
shocks are product-specific. When the shocks originate from input prices or exchange rate fluctu-
ations, this requires (at least partial) knowledge of the mapping from inputs to products: e.g., the
percentages of wheat and corn among the ingredients of ready-to-eat cereals (Barahona et al., 2023)
or the country of assembly for each car model (Grieco et al., 2024). However, in some settings where
input prices are observed, the mapping to products is not available. Villas-Boas (2007) addresses
this problem by using interactions between market-specific input prices and product dummies as
instruments. The intuition is that, when the same product is observed in sufficiently many markets
(e.g., time periods), the sensitivity of each product’s price to all inputs prices is revealed.

This insight can be adapted to our setting, in a two-step approach. First, the exposure of each
product to the set of inputs is estimated by a product-specific (e.g., time-series) regression of price
on recentered input price shocks. This regression should have sufficiently many observations per
product, such that the parameters converge to some pseudo-true values, which need not reflect
the true production function. Second, a product-specific cost shock is constructed as a shift-share
aggregate of input price shocks as shifts with estimated exposures as shares and used in the rest of

the analysis. We leave the precise asymptotic analysis of this approach to future drafts.

Alternative Demand Models. While we have focused on nested and mixed logit, our approach
extends to other popular parametric demand systems. Most directly, nested and mixed constant
elasticity of substitution (CES) models are closely related, with prices replaced with log prices and
quantity shares replaced with expenditure shares. Our instrument construction then goes through.
Similarly, our analysis extends directly to variations on the mixed logit model used in IO, such
as the Hotelling model of spatial product differentiation (e.g. Houde, 2012) and the “principles of

differentiation” model of Bresnahan et al. (1997) which combines multiple nest groupings.

Non-Parametric Demand. We follow Berry and Haile (2014) in considering non-parametric
identification of demand under Assumption 1 instead of the conventional stronger assumption (our
equation (13)) that they impose. As they show, identification requires an index restriction: that
at least one component of (pjm,l';m), enters demand without a random coefficient. Moreover,
exogenous cost shocks are only sufficient for non-parametric identification if price satisfies this

property. We show that this result extends to our weaker assumption, too:

Proposition 1. Consider the non-parametric inverse demand model with an index restriction on
price:

Pjm + Ejm = Dj(sma Tim) (23)

for an unknown set of functions Dj. Suppose Assumption 1 holds with q,, =0 and the cost shocks

satisfy a completeness property: for any function h(Sm,, Tm,) with finite expectation, B [h(Spm, Tm) | Gy, Tm] =

0 a.s. implies h(Sm, xm) =0 a.s. Then D;(-) and the unobserved demand shifter &, are identified

up to an additive term B;(xy). Moreover, cross-price elasticities are point-identified.
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4 Monte Carlo Simulations

We now analyze the bias and variance properties of the recentered IV approach, relative to con-
ventional alternatives, in a Monte Carlo simulation that largely follows Gandhi and Houde (2020).
Section 4.1 describes the baseline data-generating process, where both conventional and recentered
IVs are valid, and shows what data features drive the variance of estimates in the two approaches.
Section 4.2 then introduces product characteristic endogeneity, demonstrating that our proposed
IVs remain accurate while conventional characteristic-based IVs are significantly biased. Details of

the algorithms used for estimation are reported in Appendix B.

4.1 Mixed Logit with Exogenous Characteristics

Simulation Design. We simulate a set of regions 7 = 1,...,100 in two periods t € {1,2}; hence
m = (r,t). In each period, consumers choose between products j € 7, = {1,...,15} and the
outside good to maximize their utility, according to equation (6). We consider L; = 2 observed

time-invariant characteristics . i N(0,1), in addition to the intercept xjo = 1. Random

(1)

coefficients are placed on both characteristics, T = (Zjm1, Tjm2) but not on price. The random

coefficients 7y ud N(0, O'?) have true standard deviations of oy = 4 for ¢ = 1,2. Product j’s mean
utility d;,, is determined each period according to equation (7) with persistent unobserved demand
shifters: &;,1 d N(0,1) and &jr2 = 0.9&m1 + Vv1-0.92. ejm for ejm, i N(0,1). We set 5y = 35,
B1 = P2 = 2, and a = —0.2 — 4exp(0.5). Market shares are simulated with 1,000 independent
draws:

Lo (i)

Sjm:wooZHZ 5 RO
i=1 ke, €XP | Okm + ;%)

(24)

Prices are set by a simultaneous Bertrand-Nash game where each product is produced by a
single firm. In each period the price vector for each region p,,, is the solution to the following
system of equations derived from the firms’ first-order conditions:

-1

D)
dS(8m; 0, Tm, Pr) | S(8m:0, D) ). (25)

dp;,

pm:cm_

where ¢, = V' jm + Wjm + gjm is firm j’s marginal cost (and the derivative with respect to price
includes the effect through d,,,). We set 79 = 5 and 1 = 72 = 1 and generate persistent unobserved
cost shocks: wjr1 i N(0,1) and wjro = 0.9wjr1 + V1-10.92. wj for wjy, ud N(0,1). The observed
cost shocks only happen in the second period, such that gj1 = 0 and gj.2 d N(0,0.2%).29 Note

that the variance of g2 is only 4% of the variance of unobserved cost shocks, consistent with the

limited exogenous shock variation expected in typical applications.

2The parameters of our simulation were picked to follow the simulation in Gandhi and Houde (2020) as much
as possible. The deviations arise for three reasons: we have two periods, we distinguish between observed and
unobserved costs shocks, and we do not have a random coefficient on price. Our value for « is picked as the average
price coefficient: they set the linear coefficient on price to —0.2 and have (the negative of) log-normal random
coefficients with the mean —4e°®. We also set L, = 2 instead of 4 and Bo = 35 instead of 50.
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We estimate this model for two alternative sets of moment conditions. For the conventional
characteristic-based IVs, let ZjCT2 be a vector collecting g;r2, -, and a set of two instruments for
o = (01,09): either BLP (sum of competitor characteristics) instruments or the local or quadratic

differentiation IVs for proposed by Gandhi and Houde (2020). These instruments are given by:

BLP Sum of Characteristics IV :  zj.00 = Z Thre

keTr k#j
GH Quadratic Differentiation IV :  zj.00 = Z (@jre — :L'krg)2
k?Ej’rak#j
GH Local Differentiation IV :  zj90 = Z 1{|zjre — Tjre] < Ke]
keTr k#j

with a proximity threshold r¢; we follow Gandhi and Houde (2020) and use the standard deviation
of zjme. We then estimate («, 3,0) via GMM using data from the second period only (when the

cost shock is available) and the moment condition:
E [Z;58jr2] = 0.

For the recentered instruments, let Z ﬁ'Q be a vector collecting g;-2 and either the shift-share or
recentered exact prediction IVs proposed in Section 3. We recenter by permuting the cost-shocks
20 times across both products and markets. We use the continuously updating procedure proposed
in Section 3.4 to bypass the need for initial estimates (iterative GMM yields very similar results).

The moment condition is:
E[Z]l,A8,] =0

for A&, = &jr2 — &jr1. Differencing corresponds to setting B; defined in Section 3.4 to the lagged
values 'z, + &jr1 (since characteristics are time-invariant they drop from the estimation) which
helps reduce residual variation since the demand shifters are serially correlated. Since we simulate
a panel with two periods, it is natural to set the prediction for prices and shares that we will use
to construct Zﬁiz to their pre-cost shock (i.e. period one) values, (Pjr2,3jr2) = (Pjr1,Sjr1). See

Appendix B for additional details on our estimation.

Baseline Results. Figure 1 shows the results of our estimation for 100 Monte Carlo simulations.
As expected, each set of instruments yields approximately unbiased estimates for each of the pa-
rameters. The recentered IVs tend to estimate the price coefficient somewhat more precisely than
the differentiation IVs, with a tighter distribution of estimates, while the reverse is true for the
nonlinear parameters. BLP instrument estimates are considerably noisier for all parameters; we

drop them going forward to focus on the leading characteristic-based IVs.

Sensitivity. We next study how the precision of the recentered IV and differentiation IV estimates
varies with two key features of the data-generating process. Figure 2 shows that recentered IVs
have less power to estimate the nonlinear parameters o with a lower variance of cost shocks (both

IV approaches benefit from more variable shocks for estimating the price coefficient). In turn,
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Figure 1: Baseline Simulation Results
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Notes. The two panels show the simulated distributions for the GMM estimates of a and (o1, 02) across 100
simulations of the data-generating process described in Section 4.1. The “Recentered Shift-Share” estimates
use the shift-share IV described in Section 3.3; “Recentered Exact” estimates use the exact prediction IV
(recentered around the average of 20 permutations of the cost shock); “GH Local,” “GH Quadratic,” and
“BLP” correspond to the characteristic IVs described in Section 4.1. For each set of estimates, we plot the
median, a box delineating the 25th and 75th percentiles, lines denoting the 10th and 90th percentiles, and a
horizontal dashed line denoting the true value of the parameters.

Figure 3 shows that differentiation IVs have lower power for ¢ with less variation in choice sets
across markets. While in our baseline simulation each market has an independent draw of product
characteristics, here we make a subset of products the same across all markets, as when sold
nationally. In the extreme case where all products are common across markets, differentiation I'Vs

only have variation because product fixed effects are not included in our estimation procedure.

4.2 Endogenous Product Characteristics

We now show that our proposed I'Vs continue to accurately estimate the price elasticity parameters
even when product characteristics are endogenous, while the differentiation I'Vs do not. We consider
a simple model of characteristic endogeneity that assumes each region has a time-invariant “bliss
point” B, for the first product characteristic.3’ Consumers dislike products far from the bliss
point, which we model by subtracting 3(x ;1 — B;)? from &;,4. Realizing this, firms introduce more
products near the bliss point, which we model by centering the distribution of ;.1 around B,:
Tjm1 YN (Bm,1). Here the differentiation IVs of Gandhi and Houde (2020) are invalid because
popular products are in the dense part of the distribution of product characteristics. By contrast,
our proposed IVs only require exogeneity of the cost shocks.

Figure 4 summarizes the results: there is little bias when using our proposed IV and a moderate
decrease in power relative to Figure 1. However, using either of the two differentiation IV strategies
yields substantially biased estimates for o;: the estimates are equal to zero in all simulation draws.
The reason is that, under exogenous entry, mixed logit predicts a negative correlation between

market shares and the degree of local competition as proxied by the differentiated IVs. This

30This simulation is in spirit to Gandhi and Houde (2020), Section 4.4.
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Figure 2: Role of Cost Shock Variation
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Notes. The two panels show the distributions of the indicated parameter estimates for different values of the
standard deviation of the cost shock gjr2. The data-generarating process is otherwise unchanged; see notes to

Figure 1.

Figure 3: Role of Cross-Market Characteristic Variation

(a) Price Coefficient «

(b) Non-Linear Parameter

o1

Recentered Shift-Share o Recentered Shift-Share
Recentered Exact Recentered Exact
GH Local 50 GH Local
GH Quadratic GH Quadratic
=45
=
E
o . . . o
. . . o . Sle - . o A 0)4.( 3 T S 1
e © 30
. 2.5
—8.0
2 [ 10 14 6 10 14

Number of products in every market

6
Number of products in every market

Notes. The two panels show the distributions of the indicated parameter estimates as we vary the number
of common products across markets. In each simulation we set xj-¢ = 1, for indicated number of common
products 7 = 1,...,C. The data-generarating process is otherwise unchanged; see notes to Figure 1.
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Figure 4: Endogenous Characteristics

(a) Price Coefficient (b) Non-linear Parameters o1, 02
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Notes. The two panels show the distributions of the indicated parameter estimates as we introduce a bliss point
B, for the first characteristic in each region. The data-generarating process is otherwise unchanged; see notes
to Figure 1.

negative correlation is especially strong when the variance of random coefficients is high. However,
with endogenous entry, as in our simulations, market shares tend to correlate positively with being
in the dense part of the characteristic space (because that means being close to the bliss point).
This generates a strong negative bias in ¢; when using the differentiation IVs.?! Notably, this bias
seems to also affect differentiation IV estimation of the price coefficient v and the other nonlinear

parameter o9; recentered IV estimates remain unbiased for these parameters as well.

5 Conclusion

Modern demand models give a flexible yet tractable structure for substitution across goods. We
develop new tools for bringing this structure to data by leveraging its predictions of how key en-
dogenous variables respond to a set of exogenous supply-side shocks. Our recentered IV approach
avoids the widespread but often implausible assumption of exogenous product characteristics, let-
ting us “reuse” the exogenous shocks to construct multiple powerful instruments targeted at each
of the nonlinear parameters of the model. Simulations suggest recentered I'Vs can have comparable
power to leading characteristic-based I'Vs while avoiding severe bias from characteristic endogeneity.
Future drafts will illustrate this approach in a real setting.

Several open paths remain in this agenda. First, we have only considered here demand esti-
mation with market-level data; the role of recentered IV with individual choice-level data is an
interesting question for future research. Second, while we have characterized non-parametric iden-
tification of demand with recentered IVs, flexible estimation (using, e.g., modern machine learning
tools) is worth further study. Finally, we expect recentered I'Vs to be useful for identifying structural
models beyond demand—such as for dynamic choice or strategic entry in 10, or other phenomena

in macroeconomics, international trade, and spatial economics. Developing these extensions may

31'We thank Jean-Francois Houde for pointing this out to us.
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yield practical new ways to improve the credibility and transparency of structural estimation.
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Online Appendix

A Theoretical Appendix

A.1 Derivations for Section 2

Market Shares with Nested Logit Demand. Let d;, = apj, + » be product j’s mean
utility and Dy = > sc 7. djnexp (0jm/(1 — 0)). Then, as is well known (e.g, Berry (1994)), nested

logit market shares satisfy

Sim__ exp (3m/(1 - 0))

Sn(jym Dugym Ay
TR 4
1
Som = m (A3)
Equation (1) follows from simple manipulation of these terms.
Exact Prediction of Within-Nest Share. Let pjm = 7o + 7gjm where 7y is an intercept

suppressed in Section 2. Plugging 6j, = &pjn, into the within-nest share expression (Al) yields

(3):

—~  Sim a o
log J = — (7o + Tgjm) — log Apn( ) €XP ( — (o + K )
SnGym L1—0C ( Jm kém n(j) 1—& ( m)
& . a
=15 T9im — log Z din(5) €XP (1 — 67Tgkm> .

kE€ETm

First-Order Approximation. We now take a first-order approximation of (3) around gin, = pg
for all k:

lo/\gS]im% a vﬁ'lig—lOg E dknexp< @ vﬁ-'ug>
Sp(jym 1—0 . 1-&
a_. S ked, dinexp (12574 ) 157 (ghm — 119)

Zkgjm dgn €xXp <%ﬁ/ﬁg>

o 1
= —log Nn(])m + 17V7T 9jm — Ni Z dknGkm
-7 n(g)m k€ETm

We interpret the second term as the response of log(s;jm/sn(j)m) to the set of cost shocks (while
the first term does not depend on the shocks and is eliminated by recentering). This response is

therefore equal to zj,, in (2), up to a non-zero scaling factor that does not affect IV estimation.
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Exact Prediction Using Lagged Shares. Suppose the choice set J,,, has not changed since

the pre-period and gj,, are shocks to price changes, such that p;, = pjm + TGjm + wjm. Let pre

32 pre pre pre
be the unobserved taste shifter in the pre-period“ such that 5jm = m T &im and, accordmg to
(A1),

e exp (8077/(1— )
pre =

Snim ke diny exp (/1 = )

We predict prices in the period of interest as pjm = pj,, + 7gjm and predict mean utilities by
using the predicted price and the pre-period taste shifter:

N _ xon pre __ cpre <~
Ojm = QPjm + m = 6jm + AT Gjm.

Substituting these into (A1) analogously to the exact hat algebra technique of Dekle et al. (2008)

yields the exact prediction:

exp <5jm/(1 — 6))

= log

(
exp (807°/(1 = ) - exp (agm/(1 )
> ke Brn(i) XD (G /(1 = 7)) - exp (a7t grm /(1 — 7))
exp (00e/(1 - )

= log

exp (a7t gjm/(1 — &)

= log — + log -
Y ke nti) €xp (0p,,/(1 = 6)) > ke, d p:% exp (T gem/(1 — &)
" Sn(i)m
Sim | GF shre ar
= IOg Spge + 1—& ——=9jm — log Z dkn (j) pre pre €xp (1 — 6_gkm> . (A4)
n(j)m kETm Sn(j)ym

As with exact hat algebra, lagged shares serve as sufficient statistics in this prediction, while lagged
prices and taste shifters need not be observed or computed.

Recentering this prediction over the distribution of shocks yields a recentered exact prediction

. pre .
T S T
m (gjm log Z dkn ) prem €xp <1 — 6gkm>
kETm Sn(j)m
she af
+E IOg Z dkzn(j) Spfem exp (1 — 6_gkm> ’ (dkna Sllzire;)kejm,
k€ETm n(j)m

32Given parameters, §§’f7‘f can be inverted from the pre-period prices and shares; however, this is not necessary.

30



First-Order Approximation Using Lagged Shares. Linearizing (A4) around g, = p4 for
all k yields

pre

—~ S S (e%y s QT
log —" ~ log e — + T—=Gim — = iy pfem T (gkm — 1)
n(g)m n(j)m kETm Sn(j)m
pre < - pre
S am Sy
= log (@% + 1—& gjm — Z dkn(] pre —pre Jkm
n(j)m kE€ETm Sn(jym

Recentering this expression eliminates the first term, while the second term is equal to z from

(5) up to a non-zero scaling factor.

A.2 Local-to-Logit Approximation
(1)

In this section we consider a model in which the random coefficients on x i and potentially also a
random coefficient on price, are equal to 1,y = oyvy for mutually uncorrelated v;y with E [v;] = 0
and E [ w] =1 (but any marginal distributions). We suppress the dependence of the S; and D; on
m%) and p; to simplify notation. We first state a lemma characterizing market shares and the share
inversion function in the “local-to-logit” approximation to the mixed logit model, which provides
a new intuition for the mechanics of mixed logit and for the approximations derived by Salanie
and Wolak (2022, Theorem 2). We then characterize 2% SSIV from Section 3.3 when the preliminary

parameter values are local-to-logit, regardless of the true parameters.

Lemma A1l. In the above model, without a random coefficient on price, the following Taylor

expansions in o = (0'4)5211 hold around o = 0:

L1 2
g
Sj(ém; U) = Sj((sm; 0) 1+ Z ?E (xjmé - jm€)2 - Z Skm (kaf - imZ)Q

ke JmU{0}
+0(c°), (A5)
Si(0m;0) o?
1 Ji’ =0im m O(o A6
Dj (Sm;0) = log 2™ ” Z a]mg— +0(a?), (A7)
where O(o?) indicates qth- and higher-order terms and
2 2
Aime = | Tjme — Z SkmTkme — 10— Z SkmLEkme ) (AS)
k€Tm k€Tm

with Skm understood as S (0.,;0) in equations (A5) and (AG). With a random coefficient on price,
the same expressions apply with price viewed as another characteristic: i.e., with Xm0 = pjm and

with the summations including £ = 0.
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Intuitively, equation (A5) shows that—in the vicinity of simple multinomial logit—increasing
oy raises the share of good j if and only if the £th characteristic of this good is relatively unusual in
its market, in the sense that its further away from the market average than the typical product is
(where by “further” we mean averaging square distances with market share weights, counting the
outside good as one of the products).

We now characterize the shift-share construction from Section 3.3 in this approximation:

Proposition Al. In the model of this section, the (th shift-share instrument from (18) correspond-

ing to the random coefficient on a non-price characteristic satisfies:

> Wikmedkm = (—20760)  Tjme - > Sk (Thmt — Fme) Grm + O(57). (A9)
keTm ke€Tm

The instrument for the random coefficient on price (if included in the model) is

S Wjtmodin =260% Bim — Pm) Gim — 200K Bim D Skmibm (A10)
k€ETm ke€Tm
— 2076 “Pim Z Skm, (ﬁjm - pm) Jkm + 0(62)7
k€ETm

where pm = Y per SkmDkm-

Intuition for these results follow from the above discussion of equation (A5). Focus first on non-
price characteristics. While cost shocks cannot affect product entry or characteristics under our
assumptions, they can still make certain products more or less unusual in the market by reallocating
market shares and thus shifting the share-weighted average of characteristics Z,,,. Under our simple
model of cost shock pass-through, z,,s increases whenever products k& with higher xp,,s receive a
lower shock—as captured by the covariance term in Proposition A1. When Z,,,0 moves up, high-,,,¢
products become less unusual and lose market shares when oy is higher while low-x;,,, products
become more unusual and gain market power in that case. Our instrument identifies o, by tracing
such differential responses, provided there is enough variation in the fth market-level aggregate
shock. When there is a random coefficient on price, there are additional effects captured by the
first two terms in (A10): cost shocks move the price of good j and prices of its competitors. For
instance, the first term reflects that if j is priced higher than the market average, a high cost shock
that increases its price makes the product vertically more unusual and raises the market share if
oo is larger.

We finally specialize equation (A9) to the common case where a random coefficient is included for
the intercept x ;¢ = 1. Given the normalization xg,, = 0, this captures heterogeneous preferences

for all inside goods vs. the outside good. In that case,

. SN Ly 2keTy SkmTk 3
> Wikmedrm = (—26760) - Som (1 — Som) - FasIm 2R 4 O(57).
k€ Tm ke, Skm
That is, the instrument is based on the share-weighted average shock to all inside products in the
market, which move prices of all inside goods relative to the outside good. The average shock is

scaled to place a higher weight on markets with the share of the outside good closer to 0.5.
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Proof of Lemma A1l. For this lemma, random coefficients on price can be handled simply by
viewing price as another characteristic. We therefore omit random coefficients on price without
loss of generality.

For consumer ¢ in market m, let
8 L1
€xp | Ojm + Zgzl OpVit X jme

L
L+ > e, eXP (5km + 22 UéVz‘ékame)

Sji =

denote the probability of choosing product j € 7, U {0} given her v; = (Vig)f:ll. Then sj, =
E, [s;i] where E, [-] denotes the expectation with respect to the distribution of v;. Also, denote
Tig = ) e, SkiTkme and Ty = Y e 7 SgmTkme- Then we have:
95 _ E 0sji
(90'5 v 8@

] =E, [Viesji (T jme — Tie)]

and

325]' 828]'1' _ _ _
doro =K, =E, |viesji | vier (xjmf — Tip) (fﬁjmz' - ﬂﬂw) - Z ThmeSkiVie' (Thmer — Tigr)
Loy

Jop0o
ooy k€Tm

At 0 = 0, all consumers have the same conditional choice probabilities, s;; = s;,,, and thus

0S;
670'2 ‘0:0 =E, [l/if] " Sim (xjmé _ i'mé)
= 07
%S, /
0o Doy ‘0:0 o Ky [Vifyif’] =0 for &' £ ¢
0%S; ) _
TJQ ‘0:0 = Ey [Vzgé] Sjm ($jm£ - xmf)Q _ Z SkmTlmt (kaﬁ — -Tmé)
(9oy) P
= Sjm | (Tjme — i?me)2 _ Z St (Thme — H?me)z
ke ImU{0}

By a second-order Taylor expansion,

2
g
Sj(5m§ U) = Sj(5m§ O) 1+ Z 76 (xjmf - ij)Q - Z Skm (kaé’ - jmé’)Q + 0(03)’
1 ke TmU{0}

establishing (A5). The Taylor approximation in logs then implies

2
(2
10g 8 (8m; 0) = 10g S;(8,m; 0) + » 7@ (@jme = Tme)* = Y Sk (Tkme — Tme)? | + O(0®).
l ke ImU{0}
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Subtracting an analogous expression that holds for the outside good,

Sj (6ma U) . Sj((sm; 0) o? ) _ _
So(Bi ) = B S(5i0) T 2 (e =) = 0= )®) £ O

log

2
g
= 5jm + § % ((xjmf - ij)Q - (0 - jmf)2) + 0(03)7
14

where the second line uses the standard result on share inversion with simple multinomial logit,
yielding equation (A6).
Finally, plugging in S;(6,,;0) = Sj(dm;0) + O(o) into equation (A6) yields (A7), as D; is the

mapping from the shares to d;y,.

Proof of Proposition A1l. We apply the steps of the shift-share IV construction in Section 3.3

to this setting. Because the above derivation shows that % lo=0=0,

08;(9mi o) _ 98;(9mi0) 0(6%) = sjm (1[j = k] — $im) + O(0?)

aékm a(skm
for spm = S; (vm; 0). Since S; (Sm; 0) =S; (5m; (7) + O(0?) by equation (A5), we also have
IS (8ym; 0 3
HOT) i (1= H] = Sim) + O(0?)

and thus

Next, by equation (A7) and writing equation (A8) as
Ajme = l‘?mg - 2$jm[ : Z SkmLkme, (All)
k€ETm

we have
9*D; (33 0) _ Oajmye
Ospmdoy ¢ OSkm,

+ 0(0'2) = —200Z jmeTrme + 0(0'2).

Also, recalling that pj., = jmo, equation (A5) implies that % = O(0?) for £ # 0 while for

¢ = 0 equations (A7) and (Al1l) yield
822)]- (ém; 0') o aajmg
Oprmdoo " Oprm

By (18), the instrument for oy, which is the recentered ¢th component of the predicted residual

+0(0%) = 200 [(Bjm — Pm) L[] = k] = Pjmrm] + O(0®).

derivative evaluated at &, p,,, and &, equals:

- . 0*D; (33 5) 0?’D; (305 5)
Vo= Vo= 3 LR Gmi0) N T — S
jme jmé & im0 (pkm pkm) + = O51m Oy (Sk’m Skm)
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For ¢ # 0, the first term is equal to O(52) and thus

y y X< x 5 = 5 = =2
?mf - V}Tme = —200GTL jimy Z SkmTkmt | km — Z Sk'mJk'm | +O0(67)
k€Tm k' €Tm

= ~20007Cjme Y Skm (Thme — Tme) Grm + O(57),
k€Tm

where the second line used the properties of covariances. In turn, for £ = 0,

y ?mO - v;‘TmO = 2607? Z [(pjm - pm) 1 [] = k] - ﬁjmgkm} gkm
keTm

— 26047 Pjm Y SkmPhm | Gem — Y Smdim | +O0(6?)
k€Tm k' eTm

= 2607 | (Bjm — Pm) Gjm — Djm Z SkmTkm
k€Tm
— 26047 Pjm Y Skm (Bkm — Dm) Gkm + O(6%),
k€ETm

establishing the claims of the Proposition.

A.3 Proof of Proposition 1

Write Bj(%m) = E [§n | T, éjm = &jm — Bj(xm), and ﬁj(sm,a:m) = Dj(8m,Tm) — Bj(xm). Then
we can rewrite equation (23) as
Pim = Dj(Sm, @m) — Ejm
with
E [ | s @] = E [gjm | s @il = By(@m) = 0,

where the last equality uses Assumption 1. This is a standard non-parametric IV problem of Newey
and Powell (2003). The completeness assumption implies that ﬁj(sm, ;) and éjm are identified,
meaning that D;(sy,, m) and &, are identified up to an additive term 3;(a,,).
Inverting D = (72) ‘ yields
JE€ETm
s =D (Do + & — Blwm), Tm)

Thus, cross-price elasticities are given by

~ 1

where all terms are point-identified.
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B Monte Carlo Simulation Details

B.1

Baseline Data-Generating Process

For each of 100 simulations, we generate a set of regions » = 1,...,100 in time periods ¢t = 1, 2.

Each market m = (r,t) has j = 1,...,15 products and an outside good, j = 0. Each product has

L; = 2 time-invariant characteristics with random coefficients and an intercept (with no random

coefficient). The data-generating process is as follows:

Random coefficients: 7y ud N(0, a?) forall £ =1,..., L.

Observed characteristics: x . i N(0,1) forall £ =1,...,Ly; zjr0 = 1.
Idiosyncratic preference shocks: € i T1EV(0,1).

Unobserved taste shifters: §;1 ud N(0,1), &ro = 0.9¢,1+V1 — 0.9%-¢jp0 with ejro ud N(0,1).

Unobserved cost shifters: wjy1 ud N(0,1), wjra = 0.9wjr1 + V1 —0.92 - wjre with wjyo ud
N(0,1).
Observed cost shocks: gj.1 = 0, gjr2 w N(0,0.2%).

Marginal costs: Cjm = v Zjm + Wim + Gjm.-

Prices: pjm, solve equation (25). To characterize this solution, first note that shares do not

directly depend on prices here:

S(0m; 0, a:g,ll)) = /sjmidp(m;o)

for
exp <5jm + ZEL:H 77i£$jmz)

1+ ke, €xXp <5km + ZeL:ll Uiekae)

Simi =

Now write the derivative of S(d,,;0, a:,(%)) in terms of own and cross price effects. Noting
d

—dim = «, we have
dpjm /
dS(Om; 0, )) _ dS(Sm; 0, zin)) dom

dpiy, a ddp, dp,
where Aj, = 0 for j # k and

A0, 2lY)) — T(8n; 0,2}

Aji(Om; o, m%)) = /CYSjmidP(’l’]i;O'),

ij(ém;a, w,(%)) = /aSjmiSkmidP<ni;U).

Conlon and Gortmaker, 2020 note the fixed point of the following mapping gives the same

solution:

Dy, < Cm + A(0; 0, m%))F(ém; o, w%))(pm —cm) — ANonm; o, :cg,ll))_IS(dm; o, mﬁ%))
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We find the fixed point of this mapping for each market m and check that it satisfies Equation
(25).33

o Parameters: op =4 forall £ =1,..., L1, « = —0.2 —4exp(0.5), Bo = 35,61 = B2 = 2,7 =
5,"}/1 = Y2 = 1.

We compute market shares of each product using equation (24) based on 1,000 draws of the random
coefficient vectors that are the same across markets.
B.2 Computing and Inverting Market Shares

We approximate S;(8,; 0, m,(ﬂl)) using 250 elements of a 2-dimensional Halton sequence h; = (Ezl, E?)
Let (h}, h?) = (@fl(ﬁg), (Ifl(ﬁg)), with ®~! denoting the inverse of the standard normal CDF, and

| 20 exp ((5]'7"2 + 23:1 Uth%’T)

YT Srtjis  Srtji = .
250 =1 1+ ZkGJr exp <(5kr2 + Z?:l O'ghflﬂir)

Sj (5rt§ g, wgl)) =

To generate ﬁf, we use the reverse-radix scrambling algorithm in Kocis and Whiten (1997) and
skip the first 1,000 draws. Various derivatives of S; that we will use below (e.g., 9S;/00y) are
approximated in the same way, with s,4;; replaced by its derivatives.

We compute 6+ = Dj(sy¢; 0, :1:51)) as the fixed point of the contraction mapping

st 6l

Jrt jrt + log st — log Sj ((5%), o, :67(}))7

log(sjrt/s0rt). To compute the fixed point, we use the “SQUAREM”

method of Varadhan and Roland (2008) with a maximum of 10,000 iterations and a tolerance of

. . . o(0)
with the starting point § it =

€®/6 where € is the double-precision machine epsilon.

B.3 Computing Instruments

We focus here on the recentered IVs since the characteristic-based IVs are given in Section 4. To
implement the recentered shift-share instrument from equation (18), we first note that S;(-) and
D;(-) do not explicitly depend on price in this simulation. We further assume the researcher knows
E [gjm | m,q,,] = 0, such that §;,, = gjm. We obtain the pass-through coefficient 7 from a simple
linear regression of Apj, on gj2, and leave the discussion of other preliminary parameter values
(&, ) to below. Thus we have for £ =1,..., Ly:

0
ZSSIV _ }: 1) (8,15, 2D - grro. A12
jr2€ = an Lo Gsk/ 60[ (STla g,I, ) 85kr Sk ((srla g,I, ) 9kr2 ( )

To compute the derivatives, we first apply the implicit function theorem to equation (8) and

331f it does not then we solve for a fixed point of equation (25) directly. In a small number of cases (less than 0.5
markets per simulation), we do not find a solution and drop the market from the sample.
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find

D (srs0,20) = [055(6,155,2()| o
oD (s,1:6,20) = — [955(6,1:5, ()] T 9,880 6, V)
for 6,1 = (s,q, g, :UT ) Next, we differentiate 8 D (sﬂ; g, :m(al)) with respect to oy to obtain

-1

8@85;11) (srl;c},:cgl)) = — [8518(6“;6,&87(}))} ! [d&;/S (D(srl;c},:cgl));c},mﬁl))] [05/5(57«1;6,:1:(1))

r

where the total derivative with respect to oy is:

d
585’5 (D(Srﬁ&y :Bgﬂl));&aw?(«l)) = Z aékaﬁ’s(arﬁ6'733541))'801&2316 <3r1§67w1€1)>+80285’8(5r1§Ov'amg))‘
¢ keJr

The recentered exact formula instrument is given by

2
0 . . . 1 0 (o) . .
Zﬁéy = 804Dj (5(5r1 + awgm;U,fBgl));Uvzg«l))*% Z:: 78@2)3' (S(5r1 + awg£2);0,m$~1))§07$5«1)) )

where ¢g(© is obtained by randomly permuting the shocks g across products and markets.

B.4 Estimation Procedure

1
Given any moment condition E [h(¢)] = 0 with the sample analog hy(p) = N > hjr(¢) where

N is the number of product-market pairs, we estimate ¢ via non-linear GMM as

5 = argmin Qu () = 3 (o) Wln () (A14)

where N is the number of product-market pairs and Wy is a positive-definite weighting matrix.
Appendix B.4.1 details the estimation using characteristic-based I'Vs; Appendices B.4.2 and B.4.3

detail the estimation using recentered I'Vs.

B.4.1 Estimation with Characteristic-Based IVs

Let Zjzo be a vector collecting gj2, =, and two characteristic-based IVs for o = (01, 02): either
BLP (sum of competitor characteristics) IVs or the Gandhi and Houde (2020) local or quadratic

differentiation IVs. We use the second time period to estimate the parameters ¢ = (o, o, ), with
hjr(0) = &jra + Zjr2

for &jro = Dj(sr2;0, :cﬁ})) — apjr2 — 'z and Dj(sy; 0, a:,(«l)) from Appendix B.2.
We rewrite the problem (A14) as a numerical optimization over o, concentrating out «, 5. To

do so, note that the minimization over «, g is a linear IV-GMM problem with the solution

(a(0), B(a)) = (X'ZWNZ'X) " X' ZWNZ'D (0), (A15)
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where X collects (pj,«g,x;-,,), Z collects <Z’ and D(o) collects Dj(s,2;0, xﬁl)) across jr pairs.

jr2> ’
To solve min, Qn (o) = Qn (0, a(0), 5(0)), we use the following procedure:

1. Take 50 points for o from [0, 10]%; we use the deterministic “R4” sequence in Halchenko et al.
(2020). Choose o) as the point that minimizes Q (o).

2. Optimize over o via the Gauss-Newton regression algorithm, following the suggestion in
Gandhi and Houde (2020):34

o At each iteration, set ¢t = o) + b with
-1
) = — (HN(U(L))/WNHN(O'(L))) Hy (oY Wyhy (o))

where

I (o) = ha(o, (o), B(0)) = %D (o) (Z - ZWNZ'X (X' ZWy2'X) "' X'Z)

and
1
Hy(o) = 0,hn(0) = ¥ (0:D(0)) (Z — ZWNZ'X (X' ZWNZ'X) ' X'Z) .
« Continue updating o) while |[b®|| > €/2 and + < 100.

3. If « > 100 or

d
dQN(a)H > €!/3, discard step 2 and minimize Qy (o) via a BFGS-based
o

algorithm (as suggested in Conlon and Gortmaker, 2020) with the same starting parameter

o(©). We use MATLAB’s implementation via fmincon with a lower bound of 0 for o.
We note that while the system of moment conditions is just-identified and thus the choice of the
-1
positive definite matrix W should be irrelevant, in practice we set Wy = (% > i ZjTQZJ’.TQ) .
B.4.2 Continuously Updating Estimation with Recentered IVs

Let Zj 2 be a vector collecting g;-2 and either the shift-share or exact prediction IVs in Section 3.

We use the sample analog of the moment condition in first-differences, with
hir(0) = A&jr - Zjra,

where A&, = AD;(s4;0, m&l)) — aApjr, and Dj(sy¢; 0, a:7(~1)) is computed as in Appendix B.2. Note

that we do not estimate ( in this analysis. To estimate 6 we follow steps similar to Appendix B.4.1:

1. Take 50 points from [0, 10]? in the same way. Define a(o) as the regression slope of AD;(s,¢; o, :c,(nl))

on Apj, (and an intercept) instrumented with gj2. Choose ¢(®) that minimizes Qy (o, a(c))

34To be more precise, we force our o to be strictly positive by using the softplus transformation o = log(1+exp(5))
and conducting the search over ¢ (adjusting the derivatives by exp(5)/(1 + exp(&)) for the change of variables).
Also, note that the Gauss-Newton regression can be derived using the first-order approximation hn (o) ~ hy (") +
Hy (o) (0 —0™); the algorithm solves for the step size b = o —c*) via linear GMM. Isolating b from the first-order
condition 0 = 8y (hn(0) + Hy (6)b) Wi (hn (6W) + Hnx (0)b) gives the expression.
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among the 50 points while recomputing Zj,9 at each (o, a(0)) via equation (A12) or equation
(A13). Set a9 = a(5(0)).35

2. Estimate 0 using Gauss-Newton regression, searching over both o and «:3%
o At each step, set C¢TD = 00 4 p(©) | with
-1
b = — (HN(H(L))’WNH(H(L))) Hy (0O Wxhy (60)

and Hy(0) computed numerically using finite-differences (to account for the fact the

instrument also changes with the parameters).

« Continue updating 8¢ while ||b)|| > ¢'/2 and ¢ < 100.

3. If ¢ > 100 or [|83Qn(6)|| > €'/3, discard step 2 and minimize Qy(6) using a BFGS-based

algorithm with the same starting parameter 6().

Like in Appendix B.4.1, the system of moment conditions here is just-identified; we set W = I so

that estimation will not require recomputing the weighting matrix at each iteration.

B.4.3 Iterative Estimation with Recentered I'Vs

Iterative estimation is similar to Appendix B.4.2, but the instrument at each step depends on the
parameter estimates from the previous step. This allows us to concentrate out a and use analytical

derivatives. We use the following procedure:
1. Choose 6(® and o) as in Step 1 in Appendix B.4.2.
2. Compute Zj(;)z via equation (A12) or equation (A13) using o) = (c®,al).
3. Obtain estimates 0¢+1) as follows:

e Concentrate out « as
-1
aW(5) = <X’Z(L)WNZ(L)’X> X' ZOWyNZWAD (o),

where X collects Apj,—Ap, Z ) collects Z ;;)2 —ﬁ, and AD(o) collects AD;(sr4; 0, .’,Bq(~1))—

AD(o) across jr pairs (with bars denoting sample averages). Note that concentrating

o« out is possible because the instruments Z ](;)2 are fixed based on 6.

« Starting from (), search over ¢ to minimize Qg\? (o, (), which depends on ¢ via

the instruments Z ](;)2
B.4.1. If failed, discard the estimates and use a BFGS-based algorithm as in Step 3 of
of Appendix B.4.1. Save the result as 611,

. Use Gauss-Newton regression iterations as in Step 2 of Appendix

35Note that, unlike Appendix B.4.1, a(o) # argmin, Qn (o, a). Here the instrument depends on «, such that it is
not possible to concentrate out a. Rather, a(o) is a reasonable starting point that sets one of the moments to zero:
E [A&r - gjr2] = 0. We do not use (o) in Step 2.

30Like in Appendix B.4.1, we use the softplus transformation for o. In addition, we force a to be negative by
setting o = — log(1 + exp(&)) and searching over & (adjusting the derivatives accordingly).
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e Set altl) — o) (&(L-ﬁ-l))'
4. Continue updating 0 while Ha(““l) — G(L)H > €!/2 and ¢ < 100.

As in Appendix B.4.2, we set Wy = I.
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