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Algorithms are increasingly used to aid with high-stakes decision making. Yet,

their predictive ability frequently exhibits systematic variation across population

subgroups. To assess the trade-off between fairness and accuracy using finite data,

we propose a debiased machine learning estimator for the fairness-accuracy fron-

tier introduced by Liang, Lu, Mu, and Okumura (2024). We derive its asymptotic

distribution and propose inference methods to test key hypotheses in the fairness

literature, such as (i) whether excluding group identity from use in training the

algorithm is optimal and (ii) whether there are less discriminatory alternatives to

a given algorithm. In addition, we construct an estimator for the distance between

a given algorithm and the fairest point on the frontier, and characterize its asymp-

totic distribution. Using Monte Carlo simulations, we evaluate the finite-sample

performance of our inference methods. We apply our framework to re-evaluate

algorithms used in hospital care management and show that our approach yields

alternative algorithms that lie on the fairness-accuracy frontier, offering improve-

ments along both dimensions.
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1. INTRODUCTION

Algorithms are increasingly used in many aspects of life, often to guide or support high-

stake decisions, for example by predicting job performance, re-offense risk, loan default,

college success, or patient health. These predictions feed, respectively, into the determina-

tion of who should be hired; which defendants should receive bail; who should be granted

a loan; which students should be admitted to college; and which patients to treat. Yet, a

growing body of literature documents that algorithms may exhibit bias against legally pro-

tected groups, both in their predictive accuracy and in the decisions they lead to (see, e.g.,

Angwin et al., 2016, Arnold et al., 2021, Obermeyer et al., 2019, Berk et al., 2021). The

bias may arise, for example, due to the choice of labels the algorithm is trained on, the ob-

jective function that the algorithm optimizes, the training procedure, and many other factors

involved in the design of the algorithm (see, e.g., Cowgill and Tucker, 2020).

Designing an algorithm often entails a trade-off between making it more fair, i.e., less

likely to disproportionately harm a protected class, and more accurate, e.g., better at as-

signing treatment to those who benefit from it and withholding it from those who do not.

As a result, improving fairness often comes at the cost of accuracy. Regulators, policymak-

ers, algorithm designers, and actors affected by algorithmic predictions all have an interest

in assessing various aspects of this trade-off.

We provide a set of tools for estimation of and statistical inference on a fairness-accuracy

(FA) frontier recently characterized by Liang, Lu, Mu, and Okumura (2024, LLMO hence-

forth), where fairness is measured by the gap between group-specific expected losses. The

theoretical analysis in LLMO assumes perfect knowledge of the population distribution of

the observable variables and formalizes the trade-off between accuracy and fairness, shad-

ing light on how to use properties of the data distribution to determine whether it is optimal

for the designer of the algorithm to exclude certain inputs from use. However, in practice,

regulators and policymakers typically have access to only finite data. Hence, statistical in-

ference tools are crucial for analyzing properties of algorithms and for their regulation.

We put forward a consistent estimator for LLMO’s FA-frontier and derive its asymptotic

distribution. For each point on the FA-frontier, we characterize an algorithm that achieves
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it. We then develop a method to test hypotheses such as: Is it optimal to fully exclude

group identity from use in an algorithm? Does a particular algorithm lead to group-specific

expected losses that are on the FA-frontier? How far from the fairest point on the FA-

frontier are the group-specific expected losses associated with a given algorithm?

Answers to the first two questions inform the regulation of algorithms and the deter-

mination of whether discrimination occurred. The law recognizes two main categories of

discrimination: disparate treatment, where individuals are deliberately treated differently

based on their membership in a protected class; and disparate impact, where protected

classes are adversely affected disproportionately, no matter the intent (Kleinberg et al.,

2018b, Blattner and Spiess, 2022). Often, as part of an effort to avoid disparate treatment,

algorithms are designed so that they do not take race, gender, or other sensitive attributes

as input. Even class-blind algorithms, however, may lead to disparate impact. Our first

test informs a fairness-minded policymaker interested in assessing whether banning group

identity has the potential to mitigate disparate impact.1

Our second test evaluates whether a given algorithm lies on the frontier—and thus

whether a less discriminatory alternative (LDA) exists. This test is relevant to both plaintiffs

(e.g., job applicants) and defendants (e.g., hiring companies) in disparate impact disputes.

For example, if a selection process yields disparate impact, the hiring company may invoke

business necessity to justify it. The challenger must then show the existence of an LDA,

i.e., a fairer algorithm that is just as accurate. If our test rejects the null that the current

algorithm is on the frontier, it supports the plaintiff’s claim. Conversely, if the test fails to

reject, there is no statistical evidence that the hiring company can build a fairer algorithm

without sacrificing accuracy, supporting the business necessity defense. When a given al-

gorithm is not on the frontier, we characterize alternative algorithms that improve upon it

in terms of accuracy or fairness (or both).

The third inferential method yields an estimator of the distance from a given algorithm

to the fairest point on the frontier and constructs a confidence interval around it. This tool

1This question is of interest, e.g., when assessing the recent U.S. Supreme Court decision to rule out the use of

race in college admissions; for an overview, see College Board.

https://highered.collegeboard.org/recruitment-admissions/policies-research/access-diversity/2023-scotus-decision/overview
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may interest any fairness-minded agent (e.g., a college) willing to trade some accuracy

for reduced disparate impact (e.g., via affirmative action), as it provides a measure of the

trade-off between promoting equity and achieving accuracy.

The key insight underlying our proposed inference methods is that since the feasible

set of group-specific expected losses associated with all possible algorithms is convex, it

can be fully represented by its support function. As the FA-frontier is a portion of the

boundary of the feasible set, we characterize and estimate it through this support function.

We express the hypotheses listed above as restrictions on the support function, yielding

easy to understand test statistics that essentially rely on judicious use of the separating

hyperplane theorem. Throughout our analysis, the support function serves as a unifying

tool for inference on properties of algorithms and of the FA-frontier.

We provide a consistent debiased machine learning (DML) estimator of the support func-

tion and establish that it converges to a tight Gaussian process as sample size increases,

building on and extending results in Beresteanu and Molinari (2008), Chandrasekhar et al.

(2018) and Semenova (2023). We show how to allow for infimum-type test statistics that are

directionally-differentiable mappings of the support function, building on results of Fang

and Santos (2019). Earlier uses of the support function for inference in partially identified

models (e.g., Beresteanu and Molinari, 2008, Bontemps et al., 2012, Kaido and Santos,

2014, Kaido, 2016, Chandrasekhar et al., 2018, Molinari, 2020, Semenova, 2023) did not

include tests for hypotheses such as the ones we consider. Expressing these hypotheses in

terms of restrictions on the support function is one of our main contributions.

We evaluate the finite-sample performance of our inference toolkit using extensive

Monte Carlo simulations. We then demonstrate its empirical value by reanalyzing algo-

rithms for high-risk care assignment at a research hospital studied by Obermeyer, Powers,

Vogeli, and Mullainathan (2019). We fail to reject the hypothesis that the hospital’s status-

quo algorithm admits an LDA, and document fairness and accuracy gains from several

alternative algorithms on the frontier that we characterize.

Related Literature. A growing literature in computer science and statistics studies al-

gorithmic fairness; see Chouldechova and Roth (2018), Barocas et al. (2023), and Corbett-
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Davies et al. (2024) for comprehensive overviews and open questions. Models have been

developed to explain algorithmic bias by decomposing disparity sources (e.g., Rambachan

et al., 2020a) or incorporating taste-based discrimination and unobservables in label gen-

eration (e.g., Rambachan and Roth, 2020). Fairness has been modeled as a constraint or

regularizer in the objective function that maximizes predictive accuracy (e.g., Dwork et al.,

2012, Berk et al., 2017) and incorporated in the preferences of a social planner that uses

algorithms in their decision-making process (Kleinberg et al., 2018a, Rambachan et al.,

2020b). In optimal policy targeting, fairness has been set as the criterion to be maximized

when choosing a policy from the set of welfare-maximizing rules (e.g., Viviano and Bradic,

2023). When protected class membership is not observed in the data but proxy variables

are available, data combination methods have been proposed to partially identify disparity

measures (Kallus et al., 2022). Yet, tests of hypotheses for properties of the trade-off be-

tween fairness and accuracy of algorithms are scant in the literature. Auerbach et al. (2024)

propose a test, which can incorporate exogenous constraints on the algorithm space, using

sample splitting for the union null hypothesis that a status quo algorithm can be weakly

improved in terms of both fairness and accuracy. Their test is based on finding another

algorithm within a user-specified subclass, subject to the constraint that the alternative al-

gorithm is at least as accurate as the status quo algorithm.

In contrast, our test for existence of an LDA is a one-shot test, valid across all algorithms

rather than a specific subclass, that reveals if the status quo algorithm is on the FA-frontier

and does not require first estimating an alternative algorithm. Characterizing the entire FA-

frontier allows us to provide a comprehensive toolkit for statistical inference that can be

useful for regulators to determine what algorithm design restrictions and reporting require-

ments to impose on entities making decisions using algorithms.

Outline. Section 2 lays out notation and summarizes the derivation of the FA-frontier in

LLMO. Section 3 characterizes the support function of interest and uses it to describe the

FA-frontier. Section 4 derives the asymptotic properties of our DML estimator for the sup-

port function. Section 5 uses these results to obtain a consistent estimator and an asymptot-

ically valid confidence set for the FA-frontier, and characterizes algorithms attaining points
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on it. Section 6 formulates hypotheses of interest in the fairness literature as restrictions

on the support function and proposes asymptotically valid tests. Section 7 provides an es-

timator and inference method for the distance between the expected group-specific losses

associated with a given algorithm and the fairest point on the frontier. Section 8 presents

our Monte Carlo simulations and re-evaluation of Obermeyer et al. (2019)’s study on a re-

search hospital’s use of algorithms for assigning patients to a high-risk care management

program. Section 9 concludes. Our main proofs are in Appendix A; Appendix B reports

auxiliary results and extensions, and Appendix C includes supplemental empirical results.

2. SETUP

Let a population of individuals be described by an outcome Y ∈ Y ⊂ R, a binary group

identity G ∈ {r, b} (red or blue), and a vector of covariates X ∈ X ⊂ RdX , with the pop-

ulation distribution of (Y,G,X) denoted P. For example, Y may denote an individual’s

number of active chronic illnesses in the subsequent year, G may denote their race, and

X may include age, gender, biomarkers, comorbidity, costs and medication variables. The

relation between G and X is left unspecified, but G is not part of X . Throughout, we as-

sume G is binary, though the results extend to multiple groups. Each individual receives

a binary decision D ∈ {0,1}, e.g., whether they are automatically enrolled in a high-risk

care management program. An algorithm a : X 7→ [0,1] assigns a probability distribution

to D; e.g., the algorithm assigns each patient a health risk score in [0,1], which for sim-

plicity we take to be the only input to the enrollment decision, and hence to coincide with

the enrollment probability. Let A(X ) denote the set of all algorithms that map from the

input space X to a probability distribution over D, and ℓ : {0,1} × Y 7→ R be a function

that measures the loss associated with decision d ∈ {0,1} for an individual with outcome

y ∈ Y . In the example discussed so far, the algorithm designer observes training data con-

sisting of covariates X and a binary outcome Y indicating whether someone has a number

of chronic illnesses exceeding a given threshold; the loss function ℓ may be the classifi-

cation loss, ℓ(D,Y ) = 1{D ̸= Y }, which returns the value 1 if the algorithm mistakenly

enrolls a healthy person in the high-risk care program or fails to enroll someone who is very

sick. We assume throughout that the training data is drawn from the same distribution as
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the population that we eventually apply the algorithm to (i.e., the subpopulation for which

labels are observed is representative of the entire population).

Given an algorithm a ∈A(X ), let the population expected loss for group g ∈ {r, b} be

eg(a)≡ E [a(X)ℓ(1, Y ) + (1− a(X))ℓ(0, Y )|G= g] , (1)

where the expectation is taken with respect to P. We refer to the group-specific expected

loss in Eq. (1) as group risk. Following LLMO, we define a preference ordering over group

risk pairs so that e= (er, eb) is preferred to e′ = (e′r, e
′
b), denoted e >FA e

′, if

er ≤ e′r, eb ≤ e′b, and |er − eb| ≤ |e′r − e′b|, (2)

with at least one strict inequality. As shown in LLMO, all of utilitarian, Rawlsian, egali-

tarian, and various other preferences are consistent with this ordering. One can then define

the feasible set of group risk pairs across algorithms from the class A(X ) as

E
(
P,A(X )

)
≡
{(
er(a), eb(a)

)
∈R2 : a ∈A(X )

}
, (3)

and the fairness-accuracy (FA) frontier as

F
(
P,A(X )

)
≡
{
e ∈ E

(
P,A(X )

)
: ∄ e′ ∈ E

(
P,A(X )

)
such that e′ >FA e

}
. (4)

For finite (X ,Y), LLMO show that E
(
P,A(X )

)
is a closed convex set (we extend this

convexity result to general (X ,Y) in the proof of Proposition 3.1) and F
(
P,A(X )

)
is a

specific portion of its boundary connecting three points: the feasible point that minimizes

the risk for group r, denoted R; the feasible point that minimizes the risk for group b,

denoted B, and the feasible point that minimizes the absolute difference in group risks, de-

noted F .2 Adapting LLMO nomenclature, call
(
P,A(X )

)
group-balanced if E

(
P,A(X )

)
has R and B such that either R=B = F , or er < eb at R and er > eb at B; call

(
P,A(X )

)
r-skewed if er < eb at R and er ≤ eb at B, and b-skewed if er ≥ eb at R and er > eb at B.

2Ties are broken in favor of the other group’s risk for R or B. If there are multiple feasible points that minimize

the absolute difference in group risks, F is chosen to be the one that has the lowest risk for both groups.
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FIGURE 1.—The feasible set E in pink and the frontier F in black under different configurations of
(
P,A(X )

)
.

To ease notation, we drop the dependence of E and F on
(
P,A(X )

)
unless explicitly

needed. Figure 1 illustrates these sets and key points on them under a smoothness condition

stated in Assumption 2. LLMO (Theorem 1) show that the shape of F depends entirely on

whether
(
P,A(X )

)
is group-balanced or g-skewed. If group-balanced, F is the curve con-

necting R and B, coinciding with the Pareto frontier (panel (a)); if g-skewed, F connects

F and the feasible point minimizing risk for group g (panels (b) and (c) for the r-skewed

case; omitted panels for the b-skewed case). LLMO (Proposition 6) further show that ex-

cluding group identity as an algorithmic input is uniformly welfare-reducing under strict

group balance, where R and B are strictly separated by the 45-degree line.

Notation. We denote by ∥ · ∥E , ∥ · ∥L2(P), ∥ · ∥∞, respectively, the Euclidean norm, the

L2-norm under the probability measure P, and the L∞-norm (or sup-norm). For a vector a,

let ∥a∥L2(P) ≡
∥∥∥a∥E∥∥L2(P) and ∥a∥∞ be the supremum over the largest component of a.

For a matrix A, let ∥A∥max denote its max norm (the maximum absolute value among its

entries). For two sequences an and bn, an ≲ bn means an ≤ c · bn for some constant c > 0.

3. SUPPORT FUNCTION BASED CHARACTERIZATIONS

We leverage the convexity of the feasible set E to characterize it by its support function

and express the points R, B, F , and the FA-frontier F in Eq. (4) through this support

function. We begin by observing that Eq. (1) and the law of iterated expectations yield

eg(a) = E [a(X)E[ℓ(1, Y )1(G= g)|X] + (1− a(X))E[ℓ(0, Y )1(G= g)|X]]/P(G= g)
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≡ E
[
a(X)

θg1(X)
µg

+ (1− a(X))
θg0(X)
µg

]
, (5)

where we denote θgd(X) ≡ E[ℓ(d,Y )1{G = g}|X] the (measurable) conditional expecta-

tion of Lg
d ≡ ℓ(d,Y )1{G= g} given X ; µg ≡ P(G= g) the population proportion of group

g ∈ {r, b}; and the expectation in Eq. (5) is taken with respect to the population marginal

distribution of the covariates, P(X). To make sure that Eq. (5) is well defined, we assume:

ASSUMPTION 1—(Moment Restrictions): For some constants 0< c1 < 1 and 0< c2 <

∞, µg ∈ (c1,1− c1) and ess supX∈X E
[(
Lg
d

)2 ∣∣X]< c2, for all d ∈ {0,1}, g ∈ {r, b}.

Throughout, we let θ(X)≡ [θr1(X) θr0(X) θb1(X) θb0(X)]⊺ and

θd(X)≡ [θrd(X) θbd(X)]⊺, d ∈ {0,1}, (6)

M≡ diag(1/µr,1/µb). (7)

3.1. Support Function of the Feasible Set

Given Eqs. (5)-(6)-(7), E can be written as

E ≡
{(
er(a), eb(a)

)
∈R2 : a ∈A(X )

}
=
{
E[Mϑ(X)] : ϑ(X) ∈ conv ({θ0(X),θ1(X)})

}
=E [MΛ(X)] , (8)

with conv(·) the convex hull of the set in parentheses, Λ(X) ≡ conv ({θ0(X),θ1(X)})
a random interval, M in Eq. (7), and E [MΛ(X)] the Aumann expectation of the scaled

random interval MΛ(X) (Molchanov and Molinari, 2018, Example 1.11 and Def. 3.1).

As the set E is non-empty, compact, and convex, its support function in each direction

q = [q1 q2]
⊺ ∈ S1 ≡ {v ∈R2 : ∥v∥E = 1}, defined as

hE(q)≡max
e∈E

q⊺e,

uniquely characterizes E through the identity (Rockafellar, 1997, Chapter 13)

E =
⋂
q∈S1

{
z ∈R2 : q⊺z ≤ hE(q)

}
. (9)
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We next provide a closed-form expression for hE(q).

PROPOSITION 3.1: Let Assumption 1 hold. Then:

hE(q) = E [max{(Mq)⊺θ0(X), (Mq)⊺θ1(X)}]

= E
[
(Mq)⊺L0 + (Mq)⊺(L1 −L0)1{k(θ(X),Mq)> 0}

]
, (10)

where k(θ,Mq)≡ (Mq)⊺
(
θ1(X)−θ0(X)

)
, Ld ≡ [Lr

d L
b
d]
⊺, and Lg

d ≡ ℓ(d,Y )1{G= g}.

The support function hE(q) is our key inferential tool. One can garner the intuition behind

its closed-form expression by rewriting eg(a) = E
[
θg0(X)
µg

]
+E

[
a(X)

θg1(X)−θg0(X)
µg

]
and

hE(q) = E
[
q1

θr0(X)
µr

+ q2
θb0(X)
µb

]
+ max

a∈A(X )
E [a(X)k (θ(X),Mq)] .

The maximum in the above expression is achieved by the algorithm aopt(X; q) =

1{k(θ(X),Mq)> 0}, yielding Eq. (10) upon applying the law of iterated expectations.

REMARK 3.1: We allow for randomized decision rules and for A(X ) to be unrestricted.

If instead the family of algorithms is restricted a priori (e.g., by capacity constraints)

so that a(X) = Pr(D = 1|X) ∈ [a(X), ā(X)], 0 ≤ a(X) ≤ ā(X) ≤ 1, with a(·), ā(·)
known functions, our analysis continues to apply by replacing {θ0(X),θ1(X)} with

{ā(X)θ0(X) + (1− ā(X))θ1(X), a(X)θ0(X) + (1− a(X))θ1(X)}). In Appendix B.1,

we also show that our results continue to hold if one restricts attention to threshold rules

of the form D = 1{a(X) ≥ 0} for unrestricted a : X 7→ R (and in fact aopt(X; q) is a

threshold rule), or to linear threshold rules where a(X) = [1; X]⊺β for some β ∈ RdX+1,

provided the space of algorithms is sufficiently rich (see Assumption B.1).

3.2. Best Group-Specific Points on the FA-Frontier

We next define the support set of E in direction q ∈ S1:

SE(q)≡ E ∩
{
z ∈R2 : q⊺z = hE(q)

}
, (11)
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i.e., SE(q) is the intersection between E and the hyperplane with normal vector q and con-

stant hE(q), hence collecting the extreme point(s) of E in direction q. To derive a closed-

form expression for SE(q), we impose the following assumption:

ASSUMPTION 2—(Margin Condition): There exists 0<m≤ 1 such that for any δ > 0,

supq∈S1 P(|k(θ(X),Mq)|< δ)≲ δm, with the probabilities taken with respect to P(X).

Assumption 2 is a margin condition that guarantees sufficient smoothness in the distri-

bution of θ1(X) − θ0(X) for us to show that hE(q) is differentiable in q ∈ S1 and con-

sequently SE(q) includes a single element in each direction q (Schneider, 1993, Corollary

1.7.3). We further show that SE(q) equals the gradient of the support function hE(·) with

respect to q. We denote by SE(q) both the singleton set and its only element.

PROPOSITION 3.2: Let Assumptions 1-2 hold. Then,

∇qhE(q) = E
[
ML0 +M(L1 −L0)1{k(θ(X),Mq)> 0}

]
= SE(q), (12)

uniformly in q ∈ S1, where SE(q) is uniformly continuous in q ∈ S1.

Let u1 ≡ [−1 0]⊺ and u2 ≡ [0 − 1]⊺. The best group-specific points satisfy:

R= SE(u1) and B = SE(u2). (13)

REMARK 3.2: Assumption 2 allows for discrete covariates (see Proposition B.1), but is

violated if X includes discrete covariates only (see Appendix B.1), in which case we can

use data jittering to satisfy Assumption 2 by adding to one discrete covariate a small amount

of smoothly distributed noise, thereby garbling that input. The feasible set constructed with

a jittered covariate can be made arbitrarily close to the true feasible set (this result can be

proved by adapting arguments in Chandrasekhar et al., 2018, Lemma 8).

REMARK 3.3: The argument in Bontemps et al. (2012, Supplemental Appendix B.2.3)

shows that E has no kinks (i.e., no support points such that there exist at least two distinct

vectors q and v satisfying SE(q) = SE(v)) if and only if for any q, v ∈ S1, q ̸= v,

P
(
k(θ(X),Mq)> 0, k(θ(X),Mv)< 0

)
> 0. (14)
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If (θ1(X) − θ0(X)) admits a positive density function on a ball of positive radius that

includes zero, Eq. (14) is satisfied. Assumption B.2 in Appendix B is an example of low

level conditions yielding this result. The absence of kinks renders simpler limit distributions

for the test statistics that we put forward in Sections 5-7. Nonetheless, Eq. (14) is not needed

for our results to apply and we provide a full treatment allowing for the presence of kinks.

3.3. Fairest Point on the FA-Frontier

Determining the coordinates of the fairest point F is more laborious, as they depend

on whether E lies entirely above, entirely below, or on top of the 45-degree line. Figure 2

illustrates all possible locations of the feasible set E relative to the 45-degree line. When E
lies entirely on one side of the 45-degree line, as depicted in panels (b) and (d), F is the

support set of E , respectively, in directions u2 − u1 = [1 − 1]⊺ and u1 − u2 = [−1 1]⊺:

F = SE(u2 − u1) when E lies entirely above the 45-degree line, (15)

F = SE(u1 − u2) when E lies entirely below the 45-degree line. (16)

Complications arise when E intersects with the 45-degree line, as depicted in panels (a), (c),

and (e) of Figure 2. In this case, the direction at which we can obtain F as the support set of

E is difficult to determine. To circumvent this challenge, we propose a different approach.

We focus on the convex set that results when E intersects the 45-degree line:

Ẽ ≡ E ∩H45, where H45 ≡ {e ∈R2 : er = eb}. (17)

The new set Ẽ is depicted in panels (a), (c), and (e) of Figure 2 as an orange line segment.

In these cases, F is the support set of Ẽ in direction u1 with identical values for its two

coordinates. Hence,

F = (u1 + u2)hẼ(u1) when E intersects with the 45-degree line. (18)

We are left with providing an expression for hẼ(q). When E intersects H45,

hẼ(q) = inf
p1,p2∈R2:p1+p2=q

hE(p1) + hH45(p2) = inf
c∈R

hE

q− c

 1

−1

 , (19)
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FIGURE 2.—All possible locations of the feasible set E relative to the 45◦ line, H45. In panels (a), (c), and (e),

E intersects with H45, and the fairest point F is the support set of Ẽ in direction u1, where Ẽ is the intersection

between E and H45 (depicted as an orange line segment). In panels (b) and (d), E ∩H45 = ∅, and F is the support

set of E in direction u2 − u1 for the r-skewed case in (b) and u1 − u2 for the b-skewed case in (d).
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where the first equality follows from Rockafellar (1997, Corollary 16.4.1), and the second

follows from the fact that hH45(p2) is bounded from above only along the direction p2 =

c[1 −1]⊺ for any scalar c ∈R, in which case hH45(p2) = 0. Importantly, the last expression

in Eq. (19) is always well defined, regardless of whether E intersects with H45 or not; the

infimum equals a bounded scalar in the case of intersection and −∞ otherwise.3

3.4. Support Function-Based Characterization of the FA-Frontier

We next show that the FA-frontier put forward by LLMO and reproduced in our Eq. (4)

can be characterized using the support function of the feasible set E and that of an auxiliary

set that we introduce in this subsection.

Given an algorithm a∗ ∈A(X ) that induces the risk pair e∗ = [e∗r, e
∗
b ]
⊺ ∈ E , let

C(e∗) =
{
e ∈R2 : er ≤ e∗r, eb ≤ e∗b , |er − eb| ≤ |e∗r − e∗b |

}
, (20)

denote the set of risk allocations e ∈R2—whether or not they are feasible—that are both

weakly more accurate and weakly fairer than e∗. The set C(e∗), depicted in the two panels

of Figure 3 as the shaded green regions corresponding to two different values of e∗, is a

closed and convex subset of R2. Panel (a) depicts a case where e∗ ∈ F , whereas panel (b)

depicts a case where e∗ /∈ F . The key insight from the figure, which we prove can be used

to characterize the FA-frontier using the support function of E and that of C(e∗), is that

for any e∗ ∈ F , the sets E and C(e∗) can be properly separated (see, e.g., Schneider, 1993,

p.12, for a definition of proper separation), while in the case where e∗ /∈ F they cannot.

PROPOSITION 3.3: Under Assumptions 1-2, e∗ ∈ F if and only if there exists a hy-

perplane that properly separates C(e∗) and E , i.e., there exists q ∈ S1 such that hC∗(q) =

−hE(−q). Let S̃1 ≡ S1 \{q ∈ S1 : q1+ q2 < 0} and [ · ]− ≡−min{ · ,0}. We then have that

F =

{
e∗ ∈ E :

[
max
q∈S̃1

(−hC(e∗)(q)− hE(−q))

]
−

= 0

}
. (21)

3To see this, let q(c)≡ q − c[1 − 1]⊺ and note that hE(q(c)) = ∥q(c)∥E · hE
( q(c)
∥q(c)∥E

)
. When E intersects

with H45, hE
( q(c)
∥q(c)∥E

)
is bounded and nonnegative along the sequences c→∞ and c→−∞, but when E and

H45 are disjoint, it takes negative value along one of these sequences, yielding infc hE(q(c)) =−∞.
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FIGURE 3.—The set C(e∗), which collects all improvements relative to e∗, is the region shaded in green. Its

shape depends on whether e∗ lies above or below the 45◦ line. Panel (a) shows an example of the case where e∗

lies on the frontier and there exists a hyperplane that properly separates C(e∗) and E , whereas in panel (b) e∗ is

not on the frontier and no hyperplane can separate C(e∗) and E .

Remarkably, this characterization of the FA-frontier does not require knowledge of

whether E intersects the 45o line, or whether there is group balance or skew. As we show

in Sections 5-6, the characterization of the FA-frontier in Eq. (21) is very helpful for esti-

mation and inference, and for testing whether there exists an LDA to a given algorithm.

4. SUPPORT FUNCTION ESTIMATOR AND ITS ASYMPTOTIC DISTRIBUTION

In practice, the policymaker does not have perfect knowledge of P. Hence, hE(q) can

only be estimated from a finite sample. Let a sample of size n, {(Yi,Gi,Xi)}ni=1, drawn in-

dependently and identically from P, be available. Recall Eq. (10): hE(q) = E
[
(Mq)⊺L0 +

(Mq)⊺(L1 − L0)1{k(θ(X),Mq) > 0}
]

with k(θ,Mq) ≡ (Mq)⊺
(
θ1(X) − θ0(X)

)
, so

that θ(X) ≡ [θr1(X) θr0(X) θb1(X) θb0(X)]⊺ enters the expression for hE(q) only through

(θr1(X) − θr0(X)) and (θb1(X) − θb0(X)). We propose estimating hE(q) by first estimat-

ing the finite dimensional parameters M by sample averages and the nuisance functions

∆θ(X)≡ [(θr1(X)−θr0(X)) (θb1(X)−θb0(X))]⊺ by flexible machine learning methods (al-

lowing the complexity of the parameter space containing the estimator to grow with sample

size), and then plugging their estimators, denoted M̂ and ∆̂θ(X), into the sample analogue

of Eq. (10). Following the literature on debiased machine learning (e.g., Newey, 1994,
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Chernozhukov et al., 2018, Semenova and Chernozhukov, 2021, Chernozhukov et al.,

2022, Ichimura and Newey, 2022), we show that, at the population M, the moment in

Eq. (10) is Neyman-orthogonal and hence “insensitive” to the errors in the first-stage esti-

mation of ∆θ (Neyman, 1979, 1959). We use sample splitting to relax the otherwise needed

Donsker condition that limits the complexity of the relevant parameter space (e.g., Bickel,

1982, Robins et al., 2008, 2017), and we account for the estimation error of M.

Recall that Ld ≡ [Lr
d Lb

d]
⊺, with Lg

d ≡ ℓ(d,Y )1{G = g}, and θgd(X) = E[Lg
d|X]. Let

∆Lg ≡ Lg
1 − Lg

0, so that ∆θg(X) = E[∆Lg|X]. To learn the nuisance parameter ∆θg(X),

the effective label that, given X , we train machine learners to predict is ∆Lg . Let Θ denote

the convex nuisance parameter space (a subset of a vector space with L2(P) norm) to which

∆θ = [∆θg(X) ∆θb(X)]⊺ belongs and ∆ϑ≡ [∆ϑr(X) ∆ϑb(X)]⊺ be a generic element

from Θ (to simplify notation, we drop the dependence of θ on X unless explicitly needed).

For the i-th observation and a given 2× 2 diagonal matrix M̊, we note that

k
(
ϑ(Xi),M̊q

)
= q⊺M̊∆ϑ(Xi), (22)

and using Eq. (22) to recognize that we estimate ∆θ while keeping the notation as close as

possible to that in Eq. (10), we define the mapping ζi(M̊q; · ) : Θ→R as

ζi(M̊q;ϑ)≡ (M̊q)⊺L0i + (M̊q)⊺(L1i −L0i) · 1
{
k
(
ϑ(Xi),M̊q

)
> 0
}
. (23)

By Proposition 3.1, hE(q) = E[ζi(Mq;θ)]. We next show that, when M̊ is fixed at the

population M, the score function ζi(Mq;ϑ) is Neyman-orthogonal at ∆ϑ=∆θ.

PROPOSITION 4.1: Let Assumptions 1-2 hold and sup∆ϑ∈Θ ∥∆ϑ − ∆θ∥L2(P) < ∞.

Then the map ∆ϑ 7→ E[ζi(Mq;ϑ)] satisfies the Neyman orthogonality condition uniformly

in q ∈ S1, i.e., for any ∆ϑ ∈Θ and scalar t ∈ (0,1),

lim
t→0

sup
q∈S1

∣∣∣∣1t (E[ζi(Mq;θ+ t(ϑ− θ)
)]

−E
[
ζi(Mq;θ)

])∣∣∣∣= 0.

Intuitively, Proposition 4.1 shows that, under its maintained assumptions, the first-order

mistake in the sign of k(θ(X),Mq) due to the estimation error in ∆θ(X) is negligible.
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We next show that, provided n1/4-consistent first-stage estimators are available, the esti-

mated support function using sample splitting and cross-fitting, as described in Definition

1 below, converges to a Gaussian process uniformly in q ∈ S1. The proof requires show-

ing the residual in estimating the indicator functions is bounded by the quadratic rate of

convergence of the nuisance parameter, which we establish under this assumption:

ASSUMPTION 3—(Nuisance Parameter Structure): There is a known partition of X ,

X = (X1,X2,X[3:dX ]),

where X1,X2 ∈ R and X[3:dX ] ∈ R(dX−2) are such that (X1,X2) has a bounded support,

the density of |k(θ,Mq)| conditional on X[3:dX ] is uniformly bounded in q ∈ S1, and

∆θg(X) = αgX1 + βgX2 + ηg(X[3:dX ]),

for some αg, βg ∈R satisfying αb · βr ̸= αr · βb and ηg ∈H for convex H ⊆Θ, g ∈ {r, b}.

Assumption 3 requires ∆θ(X) to be linearizable in a known set of covariates (X1,X2)

and that αb · βr ̸= αr · βb. This assures that for each q ∈ S1, k(θ,Mq) depends on at

least one of X1 or X2, so that we can employ a proof technique similar to that in Semen-

ova (2023, Lemma 4.1) to show that the bias induced by errors in estimating the sign of

k(θ,Mq) is bounded by the desired quadratic L2-rate of the nuisance estimator, accommo-

dating a menu of flexible machine learners in the first stage. For example, one can adapt the

method in Robinson (1988, pp. 935-936) to estimate ∆θg . Example machine learning meth-

ods that, under suitable conditions, are n1/4-consistent in the L2-norm include ℓ1-penalized

methods, boosting, regression trees and forests, and neural nets (see, e.g., Chernozhukov

et al., 2018, and references therein, for a discussion of machine learners compatible with

the rate requirement). Assumption 3 can be eliminated at the price of using a more restric-

tive class of machine learning methods, by deriving rate bounds that depend on the squared

L∞-rate of the first-stage estimation (e.g., the Lasso, for which an L∞-rate is established

for approximately sparse models, see Belloni et al., 2017, Semenova, 2023). Alternatively,

Assumption 3 can be eliminated by smoothing the indicators (e.g., Chen et al., 2023, Park,
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2024) at the cost of introducing an additional tuning parameter that controls the degree of

smoothing.4 Importantly, Assumption 3 implies the margin condition in Assumption 2 with

m= 1 whenever (X1,X2) is continuously distributed with a bounded density and X[3:dX ]

can be either continuous or discrete; see Assumption B.2 and Proposition B.1.

We next define cross-fitting, adapting Definition 3.2 in Chernozhukov et al. (2018):

DEFINITION 1—Cross-Fitting: (i) Randomly partition the size-n sample with observa-

tions indexed by i ∈ [n] ≡ {1, ..., n} to K ≥ 2 subsamples, each of size n/K (assumed to

be an integer), where K is a fixed integer. (ii) For each partition k ∈ [K]≡ {1, ...,K} with

observations indexed by the set Ik ⊂ [n], estimate ∆θ by ∆̂θk ≡ [(∆̂θ
r
)k (∆̂θ

b
)k]

⊺, where

each (∆̂θ
g
)k = (α̂g)kX1 + (β̂g)kX2 + (η̂g)k(X[3:dX ]) is estimated using only observations

from Ick ≡ [n]\Ik. For i ∈ Ik, let ∆̂θ(Xi)≡ ∆̂θk(Xi). (iii) Let M̂= diag(1/µ̂r,1/µ̂b), with

µ̂g ≡ 1
n

∑
i=1 1{Gi = g}, and construct the second-stage estimator as

ĥE(q; θ̂) =
1

K

∑
k∈[K]

 1

n/K

∑
i∈Ik

ζi(M̂q; θ̂k)

≡ 1

n

n∑
i=1

ζi(M̂q; θ̂). (24)

In Eq. (24), to simplify notation and keep it as close as possible to that in Eq. (10)

and hE(q) = E[ζi(Mq;θ)], we use the shorthand notation ∆̂θ(Xi)≡ ∆̂θk(Xi) for i ∈ Ik,

suppress the dependence of ĥE(q; θ̂) on M̂, and adapt Eqs. (22)-(23) to let

ζi(M̂q; θ̂) = (M̂q)⊺L0i + (M̂q)⊺(L1i −L0i) · 1
{
k
(
θ̂(Xi),M̂q

)
> 0
}
, (25)

k
(
θ̂(Xi),M̂q

)
= q⊺M̂∆̂θ(Xi) (26)

Our main asymptotic result shows that ĥE(q; θ̂) converges to a Gaussian process uni-

formly in the direction q ∈ S1, where the score ζi(Mq;ϑ) in Eq. (23) evaluated at

∆ϑ = ∆θ is the influence function that governs the part of the asymptotic distribution

of ĥE(q; θ̂) due to ∆̂θ, and the the remaining part is attributed to estimating M:

4An earlier version of this paper (Liu and Molinari, 2024) obtains
√
n-Gaussianty of the second-stage estimator

without imposing Assumption 3, but under the classical Donsker condition that limits Θ’s complexity.
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THEOREM 4.1: Let Assumptions 1-2-3 hold and {(Yi,Gi,Xi)}ni=1 be a random sample

from P. Define a shrinking neighborhood around ∆θ as

Θn ≡
{
∆ϑ ∈Θ : ∀g ∈ {0,1},∆ϑg(X) = α̃gX1 + β̃gX2 + η̃g(X3:dX ),

max{|α̃g − αg|, |β̃g − βg|,∥η̃g − ηg∥L2(P)}= o(n−1/4)
}
.

Let ∆̂θk ∈Θn with probability approaching 1, ∀k ∈ [K]. Then, for ĥE(q; θ̂) in Eq. (24),

√
n

(
ĥE(q; θ̂)− hE(q)

)
=G[ζ∗i (Mq;θ)] + op(1) in ℓ∞(S1),

where G[ζ∗i (Mq;θ)] is a Gaussian process in ℓ∞(S1) indexed by

ζ∗i (Mq;θ)≡ ζi(Mq;θ) + (M∗
i q)

⊺M−1SE(q), for M∗
i ≡ diag

(
1{Gi = r}

−µ2r
,
1{Gi = b}

−µ2b

)
with ζi(Mq;θ) defined in Eq. (23) and the covariance function of G[ζ∗i (Mq;θ)] equal to

Ω(q, q̃) = E[ζ∗i (Mq;θ)ζ∗i (Mq̃;θ)]−E[ζ∗i (Mq;θ)]E[ζ∗i (Mq̃;θ)]. (27)

If V ar(Ld|X) is positive definite, then V ar(G[ζ∗i (Mq;θ)])> 0 for each q ∈ S1.

5. ESTIMATION AND INFERENCE FOR THE FRONTIER

5.1. Estimation and Inference for the Feasible Set

We propose an estimator of the set E based on ĥE(q) and Eq. (9), given by

Ê ≡
⋂
q∈S1

{
z ∈R2 : q⊺z ≤ ĥE(q; θ̂)

}
, (28)

which is convex, almost surely compact, and non-empty with probability approaching one

if E has a non-empty interior. As the Hausdorff distance between two non-empty convex

and compact sets A,B ∈Rd, denoted dH(A,B), equals the uniform distance between their

support functions (Molchanov and Molinari, 2018, p. 101), when Ê is non-empty we have

dH(Ê ,E) = sup
q∈S1

∣∣∣ĥE(q; θ̂)− hE(q;θ)
∣∣∣ ,
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By Theorem 4.1 and the continuous mapping theorem, dH(Ê ,E) p−→ 0 and
√
ndH(Ê ,E) d−→

supq∈S1 |G[ζ∗i (Mq;θ)]|. Hence, asymptotically valid tests of hypotheses about E , and con-

fidence sets covering it, can be obtained as in Beresteanu and Molinari (2008, Section 2).

5.2. Estimation and Inference for the FA-Frontier

As shown in LLMO (Theorem 1), when
(
P,A(X )

)
is group-balanced, F is the curve

connectingR andB and coincides with the Pareto frontier (panel (a) in Figure 2). However,

when
(
P,A(X )

)
is g-skewed, F is the curve connecting F with the feasible point that

minimizes the risk for group g (panels (b)-(e) in Figure 2). A further challenge is that,

while it is simple to express F through SE when E is fully contained in one of the two half-

spaces defined by the 45-degree line H45, as shown in Eqs. (15)-(16) (panels (b) and (d) in

Figure 2), characterizing F is not as straightforward when g-skew occurs but E ∩H45 ̸= ∅.

We therefore leverage the characterization of the FA-frontier F in Proposition 3.3,

whereby F =

{
e ∈ E :

[
maxq∈S̃1(−hC(e)(q)− hE(−q))

]
−
= 0

}
, and the definition of the

set C(·) in Eq. (20) to sidestep these difficulties. We propose to estimate F using

F̂ =

{
e ∈ BC :

[
max
q∈S1

(q⊺e− ĥE(q; θ̂))

]
+

+

[
max
q∈S̃1

(−hC(e)(q)− ĥE(−q; θ̂))

]
−
≤ κn√

n

}
, (29)

where [ · ]+ ≡ max{ · ,0}, κn = o(
√
n) is a sequence that diverges to infinity, and BC ≡

{e ∈ R2 : ∥e∥E ≤ C}, with E ⊂ BC by Assumption 1 and C <∞ a constant pinned down

by c1, c2 defined in Assumption 1. The first maximization problem in Eq. (29) is the sample

analog to the requirement that e ∈ E ; the second is the sample analog to the requirement

that E and C(e) can be properly separated. To implement this estimator, we derive a closed-

form expression for the support function of C(e) in direction q = [q1, q2]
⊺. Only two points

are “active” for evaluating hC(e)(q): [min{er,2eb− er}, eb]⊺ and [er, min{eb,2er − eb}]⊺,

which correspond to the points e and [er, 2er − eb]
⊺ (respectively, [2eb − er, eb]

⊺ and e)

when e is above (respectively, below) the 45-degree line as shown in Figure 3-panel (a)

(respectively, panel (b)). By Proposition 3.3, it is without loss of generality to focus on
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q ∈ S̃1. Hence, the support function of C(e) at any q ∈ S̃1 equals

hC(e)(q) = max

{
q1min{er,2eb − er}+ q2eb, q1er + q2min{eb,2er − eb}

}
. (30)

We next propose a test statistic for the null hypothesis H0 : e ∈ F , against the alternative

HA : e /∈ F . Our test statistic is given by

TF
n (e)≡

√
n

([
max
q∈S1

(q⊺e− ĥE(q; θ̂))

]
+

+

[
max
q∈S̃1

(−hC(e)(q)− ĥE(−q; θ̂))

]
−

)
. (31)

As shown in the proof of Proposition 5.1, if Eq. (14) is satisfied and consequently E has no

kinks, the large sample distribution of TF
n (e), denoted ψF (e), simplifies to

ψF (e) =
∣∣G [ζ∗i (Mq∗S1(e);θ)

]∣∣ , (32)

where q∗S1(e)≡ argmaxq∈S1 q
⊺e−hE(q). The quantiles of this distribution can be estimated

by standard methods. We build a confidence set for the elements of F by test inversion:

CSn(F) =
{
e ∈ BC : TF

n (e)≤ cF1−α(e)
}
, (33)

where for any β ∈ (0,1), cFβ is the β-quantile of ψF . When Eq. (14) is not assumed and

E has kinks, the expression for ψF (e) is more complex and given in Eq. (72). In this case,

restrictions that would guarantee uniform continuity and strict increasing properties for

ψF (e) are harder to verify, and we follow Andrews and Shi (2013, p.625) to replace the

confidence set in Eq. (33) with CSn(F) =
{
e ∈ BC : TF

n (e)≤ cF1−α+ς(e) + ς
}

, for ς > 0

an arbitrarily small constant. In this case, the critical value can be approximated through

bootstrap methods, as in Procedure 2 in Section 6.2.

We next establish consistency of our estimator F̂ and validity of the confidence set,

building respectively on Chernozhukov et al. (2007) and Fang and Santos (2019).

PROPOSITION 5.1: Let the assumptions of Theorem 4.1 hold and let κn → ∞ with

κn = o(
√
n). Then, as n→∞,

dH(F̂ ,F)
p−→ 0 (34)
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lim inf
n→∞

P (e ∈ CSn(F))≥ 1− α for all e ∈ F . (35)

5.3. Estimation and Inference for the Pareto Frontier

The Pareto Frontier (PF ) is the lower boundary of the feasible set E connecting pointsR

and B (see Figure 1). Denoting Q ≡
{
q ∈ S1 : q = [cosγ sinγ]⊺, γ ∈ [π,3/2π]

}
, we can

express PF through the support set SE(·), or equivalently through the support function:

PF ≡ {SE(q) : q ∈Q} (36a)

=

{
e ∈R2 :

[
max
q∈S1

(q⊺e− hE(q))

]
+

= 0,

[
max
q∈Q

(q⊺e− hE(q))

]
−
= 0

}
, (36b)

where the first condition in Eq. (36b) enforces that e ∈ E and the second that it belongs to

the supporting hyperplane of E in a direction q ∈Q. Knowing the directions that determine

the support points comprising PF simplifies the expression for it in Eq. (36b) relative to

Eq. (21). It also allows for an estimator, put forward in Proposition 5.2 below, based on the

support set characterization in Eq. (36a) that is free from the tuning parameter κn, which

instead is needed for the estimator of F in Eq. (29). Let ζS,i(M̂q; θ̂)≡ M̂L0i +M̂(L1i −
L0i) · 1

{
k
(
θ̂(Xi),M̂q

)
> 0
}

, with k
(
θ̂(Xi),M̂q

)
= q⊺M̂∆̂θ(Xi) as in Eq. (26) and5

ŜE(q; θ̂) =
1

n

n∑
i=1

ζS,i(M̂q; θ̂). (37)

Proposition 5.2 delivers an estimator for PF based on ŜE(q; θ̂) in Eq. (37) and establishes

its Hausdorff-consistency.

PROPOSITION 5.2: Let the assumptions of Theorem 4.1 hold. Let P̂F ≡
{
ŜE(q; θ̂) : q ∈Q

}
.

Then, as n→∞,

max
q∈Q

∥ŜE(q; θ̂)−SE(q)∥E
p−→ 0, (38)

dH(P̂F ,PF)
p−→ 0. (39)

5As in Eq. (24), this expression is a shorthand for ŜE(q; θ̂)≡ 1
K

∑
k∈[K]

(
1

n/K

∑
i∈Ik

ζS,i(M̂q; θ̂k)
)

.
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We next provide a method to test, for a given e ∈R2,

H0 : e ∈ PF against HA : e /∈ PF , (40)

using the characterization of PF in Eq. (36b). We first propose a test statistic and derive

its asymptotic distribution in Proposition 5.3 below, building on results in Kaido (2016).

REMARK 5.1: We use different characterizations of PF for estimation and for in-

ference due to difficulties with DML estimation of SE(q) that we explain here. Us-

ing Eq. (12) we can write the first (second) coordinate of SE(q) as E
[
(Mv)⊺L0 +

(Mv)⊺(L1 − L0)1{k(θ(X),Mq)> 0}
]

for v = [1 0]⊺ (v = [0 1]⊺). As k(θ(X),Mv) =

E[(Mv)⊺(L1 − L0)|X], the proof of Theorem 4.1 shows that, if v = q, the first-stage es-

timation error in the sign of k(θ(X),Mq) is controlled by the size of the error itself (be-

cause in case of sign disagreement, |k(θ(X),Mq)| ≤ |k(θ̂(X),Mq) − k(θ(X),Mq)|),
with k(θ̂(X),Mq) as in Eq. (26). However, when v ̸= q, which necessarily occurs for at

least one coordinate of SE(q), sign errors are not controlled for. Consequently, we switch

to the moment inequality characterization in Eq. (36b) that involves hE(q) only. If one uses

a parametric estimator for ∆θ(X), the asymptotic distribution of ŜE(·; θ̂) can be obtained

and inference is simplified, as a special case of the treatment in Liu and Molinari (2024),

who work with a sieve nonparametric estimator of ∆θ(X) under Donsker conditions.

PROPOSITION 5.3: Let Q∗
T(e) ≡ argmaxq∈T q

⊺e − hE(q), T ∈ {S1,Q}. Then, under

the null in Eq. (40) and the assumptions of Theorem 4.1,

TPF
n (e)≡

√
n

([
max
q∈S1

q⊺e− ĥE(q; θ̂)

]
+

+

[
max
q∈Q

q⊺e− ĥE(q; θ̂)

]
−

)
(41)

d−→

 sup
q∈Q∗

S1
(e)

G[−ζ∗i (Mq;θ)]


+

+

[
sup

q∈Q∗
Q(e)

G[−ζ∗i (Mq;θ)]

]
−

. (42)

If V ar(Ld|X) is positive definite for each d ∈ {0,1}, X − a.s., the limit law in Eq. (42) is

absolutely continuous with respect to Lebesgue measure on R++.
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If Eq. (14) is satisfied and the set E has no kinks (see Remark 3.3), Q∗
S1(e) and Q∗

Q(e)

are singletons that can be consistently estimated through standard methods, and the limit

distribution in Eq. (42) coincides with that in Eq. (32). If instead kinks are not ruled out for

q ∈Q, Q∗
S1(e) and Q∗

Q(e) may not be singletons. In this case we can consistently estimate

these sets (Kaido, 2016, Lemma D.5) as

Q̂∗
T(e)≡

{
q ∈ T : q⊺e− ĥE(q; θ̂)≥ sup

q̃∈T
q̃⊺e− ĥE(q̃; θ̂)− κn/

√
n

}
, (43)

where T ∈ {S1,Q} and κn = o(
√
n) is a sequence that diverges to infinity. We use Proce-

dure 2-Step 1 to obtain a valid bootstrap-based approximation to the Gaussian process in

Theorem 4.1. Denote P∗ this bootstrap distribution conditional on {(Yi,Gi,Xi)}ni=1. Let

ĉPF
1−α(e)≡ inf

{
c : P∗

 sup
q∈Q∗

S1
(e)

G[−ζ∗i (Mq;θ)]


+

+

 sup
q∈Q∗

Q(e)
G[−ζ∗i (Mq;θ)]


−

> c

= α

}

(44)

When V ar(Ld|X) is positive definite, it follows that if α ∈ (0,0.5),

limsup
n→∞

P
(
TPF
n (e)> ĉPF

1−α(e)
)≤ α if e ∈ PF

= 1 if e /∈ PF

(Kaido, 2016, Corollary 3.2). A confidence set that covers each e ∈ PF with asymptotic

probability at least equal to (1− α) can be obtained by test inversion.

REMARK 5.2: The result in Proposition 5.3 can be adapted to testing whether e∗ ∈ PF
when e∗ needs to be estimated, by adjusting the covariance function of the limit Gaussian

process in Theorem 4.1 and using the test statistic in Eq. (41). If the limit law in Eq. (42) is

not guaranteed to be absolutely continuous on R++, one can use infinitesimal adjustments

to the critical value to maintain asymptotic validity, as in Kaido (2016).

5.4. Algorithms Yielding a Risk Allocation on the Frontier

An algorithm designer or a regulator may wonder if one can characterize the algorithm

yielding a specific point on the FA-frontier F or the Pareto frontier PF . It turns out that,
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using our support function approach, the answer to this question is affirmative, and partic-

ularly simple for points in PF .

Suppose we have two data sets: one for training the algorithm and the other for evalu-

ating it. We denote the training sample as {(Ỹi, G̃i, X̃i)}n1
i=1 and the evaluation sample as

{(Yj ,Gj ,Xj)}n2
j=1, with n1

n2
→ c for some positive constant c and both samples drawn from

the same distribution P. Use the training data to estimate ∆θ via machine learning and M
by sample averages as described in Section 4 and denote the resulting estimators ∆̂θn1 and

M̂n1 , where the subscript n1 indicates that it is based on the training sample. Let

ân1(Xj ; q) = 1
{
k
(
θ̂n1(Xj),M̂n1q

)
> 0
}
, (45)

with k
(
θ̂n1(Xj),M̂n1q

)
as in Eq. (26). Note that ân1(Xj ; q) only takes as input the co-

variates, Xj , and does not depend on group identity Gj . Consequently, individuals with the

same covariates are assigned the same treatment irrespective of their group. Nonetheless,

information on group identity contained in the training data is used in the prediction model

(to separately estimate ∆θg , g ∈ {r, b}), thereby offering a compromise between a utilitar-

ian perspective as in Manski et al. (2023) which advocates for group-aware decisions, and

proponents of group-blind decision making.

Then, for any q ∈ S1, algorithm ân1( · ; q) leads to a loss for each observation i in the eval-

uation sample equal to ℓ(0, Yj) + (ℓ(1, Yj)− ℓ(0, Yj)) · 1
{
k
(
θ̂n1(Xj), q

)
> 0
}

. Therefore,

the average losses for the r group and for the b group in the evaluation sample equal
∑

j:Gj=r ℓ(0,Yj)+(ℓ(1,Yj)−ℓ(0,Yj))·1
{
k
(
θ̂n1(Xj),q

)
>0
}

∑n2
j=1 1{Gj=r}∑

j:Gj=b ℓ(0,Yj)+(ℓ(1,Yj)−ℓ(0,Yj))·1
{
k
(
θ̂n1(Xj),q

)
>0
}

∑n2
j=1 1{Gj=b}

= ŜE ,n2(q; θ̂n1) (46)

By the same argument as in the proof of Proposition 5.2, it follows that

max
q∈Q

∥∥∥ŜE ,n2(q; θ̂n1)−SE(q)
∥∥∥ p−→ 0 as n1, n2 →∞.

Hence, the algorithm in Eq. (45) with q ∈Q gives consistent estimators of points on PF .

Algorithms that return consistent estimators of points on F (other than those on PF ) are

harder to obtain, as one needs to determine which direction q corresponds to a point e ∈ F
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and plug that direction in the algorithm in Eq. (45). Suppose Eq. (14) is satisfied and E has

no kinks. Use the same DML construction in Section 4 applied to the training sample to

obtain an estimator of hE(q), denoted ĥE ,n1(q; θ̂n1), as in Eq. (24), and an estimator of F ,

denoted F̂n1 , as in Eq. (29). Select ên1 ∈ F̂n1 through a projection method detailed in the

proof of Proposition 5.4 so that ∥ên1 − e∥= op(1) for some e ∈ F and let

q̂∗n1
(ên1) = argmax

q∈S1
q⊺ên1 − ĥE ,n1(q; θ̂n1). (47)

Let ŜE ,n2(q̂
∗
n1
(ên1); θ̂n1) be as in Eq. (46) but with q̂∗n1

(ên1) replacing q. The next proposi-

tion establishes that ŜE ,n2(q̂
∗
n1
(ên1); θ̂n1) is a consistent estimator of SE(q

∗
S1(e)) ∈ F .

PROPOSITION 5.4: Let the assumptions of Theorem 4.1 hold. Then, as n1, n2 →∞,

∥∥∥ŜE ,n2(q̂
∗
n1
(ên1); θ̂n1)−SE(q

∗
S1(e))

∥∥∥ p−→ 0.

Regardless of whether one aims at obtaining points in PF or the entire F , the direction

q can be interpreted as the vector of weights that the agent choosing the algorithm puts

on each group’s risk. In other words, one may think of the agent as evaluating group risks

according to the welfare loss function U(e; q)≡ q1er(a) + q2eb(a). For example, the more

the agent cares about group r, the closer q is to u1. We note that ân1(X; q) is an empirical

success rule, and leave its statistical decision theory analysis to future research.

6. HYPOTHESIS TESTING

In this Section we propose hypothesis tests to answer the following policy questions:

(1) Should the policymaker consider banning group identity as an input to the algorithm?

(2) Is there a less discriminatory alternative (LDA) to an existing algorithm?

We show how to express the first policy question in terms of restrictions on hE(q), and we

leverage Proposition 3.3 to do the same for the second policy question. We then establish

asymptotic validity of the corresponding testing procedures.
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6.1. How to Test Whether Group Identity Should be Banned

LLMO (Proposition 6) show that using X only instead of (X,G) as algorithmic input

uniformly worsens the frontier if R and B, obtained when only X is used as input, are

strictly separated by the 45-degree line.6 We therefore aim at testing the null hypothesis

that R and B lie weakly on the same side of the 45 degree line, i.e., that the difference in

the two coordinates of R has the same sign as that of B, against the alternative that they

are strictly separated by the 45-degree line:

H0 :

(
(u1 − u2)

⊺R

)(
(u1 − u2)

⊺B

)
≥ 0, (48)

HA :

(
(u1 − u2)

⊺R

)(
(u1 − u2)

⊺B

)
< 0.

If the null in Eq. (48) is rejected, the policymaker should not ban group identity G as

algorithm’s input. A Type-I error amounts to the case where one concludes that there is

strict group-balance, while instead weak group-skew holds. As a consequence, one does

not ban G as input to the algorithm, thinking that banning G is uniformly welfare-reducing,

while instead depending on the preferences of the designer it might not be the case. Another

interpretation of this test amounts to determining, based on whether H0 is rejected or not, if

one can justify implementing algorithms that lead to Pareto-dominated risks based on the

designer’s preference over fairness and accuracy. When H0 holds true, this justification is

possible, as the frontier includes an upward-sloping segment (e.g., Panels (b)-(c) of Figure

1). On the other hand, when HA holds true, such justification is untenable, as the frontier

coincides with the Pareto frontier (e.g., Panel (a) of Figure 1). Hence, a Type-I error can

also be interpreted as a case where one concludes that only Pareto-optimal risks should be

implemented, while fairness considerations may justify Pareto-dominated risks.

As discussed in Remark 5.1, carrying out inference if we use DML to directly estimate

both coordinates of the points R and B is difficult. Yet, using Eqs. (11) and (13), we can

6“Uniformly worsening the frontier” means that, under the preference relations defined in Eq. (2), every point

on the frontier F
(
P,A(X )

)
is dominated by a point on the frontier F

(
P,A(X × {r, b})

)
.
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represent these points through moment equalities and inequalities that involve hE(q) only:

R :

{
hE(u1)− u⊺1R= 0,

hE(q) − q⊺R ≥ 0, ∀q ∈ S1,
B :

{
hE(u2)− u⊺2B = 0,

hE(q) − q⊺B ≥ 0, ∀q ∈ S1,
(49)

where in Eq. (49), the equality constraint for R restricts it to have horizontal coordinate

equal to that of SE(u1), as per Eq. (11), and the continuum of inequality constraints in-

dexed by q ∈ S1 restricts R to be an element of E . The moment constraints that define B

are interpreted similarly. Because the support set SE(·) in any direction is a singleton by

Proposition 3.2, the moments in Eq. (49) yield points R and B that coincide with Eq. (13).

We test the null in Eq. (48) at a given significance level α ∈ (0,1) based on our procedure

to test, for given e ∈R2, whether e ∈ PF :

PROCEDURE 1—Testing Weak Group-Skew:

1. Build a (1− α)-level confidence set for (R,B) by

CSn(R,B)≡
{
(R̃, B̃) ∈ BC ×BC : Tn(R̃, B̃)≤ ĉ1−α(R̃, B̃)

}
, (50)

where for the support function estimator ĥE(· ; θ̂) in Theorem 4.1, Tn(R̃, B̃) adapts

the test statistic in Eq. (41):

Tn(R̃, B̃)≡
∑
(e,uj)

∈{(R̃,u1),(B̃,u2)}

√
n

([
max
q∈S1

q⊺e− ĥE(q; θ̂)

]
+

+
[
u⊺j e− ĥE(uj ; θ̂)

]
−

)
.

The critical value ĉ1−α(R̃, B̃) is obtained similarly to ĉPF
1−α(e) in Eq. (44).

2. Reject H0 in Eq. (48) if

φskewn ≡ 1

{
sup

(R̃,B̃)∈CSn(R,B)

(
(u1 − u2)

⊺R̃

)(
(u1 − u2)

⊺B̃

)
< 0

}
= 1. (51)

We note that the test in Eq. (51) may be conservative as it is based on projection.

PROPOSITION 6.1: Let the assumptions in Theorem 4.1 hold. Then

limsup
n→∞

E
[
φskewn

]
≤ α. (52)
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6.2. How to Test for the Existence of an LDA

Given an algorithm a∗ ∈ A(X ) that induces the risk pair e∗ = (e∗r, e
∗
b) ∈ E , call another

algorithm that yields a feasible risk pair e= (er, eb) ∈ E an LDA if it is at least as accurate

as a∗ for both groups and at least as fair, with one of these inequalities strict. It follows

from the characterization in Proposition 3.3 and Eq. (20) that no LDA to a∗ exists if and

only if E can be properly separated from

C(e∗)≡
{
e ∈R2 : er ≤ e∗r, eb ≤ e∗b , |er − eb| ≤ |e∗r − e∗b |

}
.

Recall that the closed form expression for the support function of C∗ ≡ C(e∗) in direction

q = [q1, q2]
⊺ ∈ S̃1 is given in Eq. (30). We then test the null hypothesis

H0 : max
q∈S̃1

(−hC∗(q)− hE(−q)) = 0 (53)

against the alternative that H0 is false. Rejecting the null in Eq. (53) means that e∗ /∈ F and

there exists an LDA. We propose estimating hC∗(q) for q ∈ S̃1 by

ĥC∗(q) = max

{
q1min{ê∗r,2ê∗b − ê∗r}+ q2ê

∗
b , q1ê

∗
r + q2min{ê∗b ,2ê∗r − ê∗b}

}
,

where for g ∈ {r, b}, e∗g is estimated by sample means,

ê∗g =
1

n

n∑
i=1

Zg
i

µ̂g
, where Zg

i ≡ 1{Gi = g}
(
a∗(Xi)ℓ(1, Yi) + (1− a∗(Xi))ℓ(0, Yi)

)
(54)

and µ̂g ≡ 1
n

∑
i=1 1{Gi = g}. We propose the following test statistic:

T LDAn ≡
√
n

([
max
q∈S1

(q⊺ê∗ − ĥE(q; θ̂))

]
+

+

[
max
q∈S̃1

(
−ĥC∗(q)− ĥE(−q)

)]
−

)
. (55)

T LDAn differs from TF
n in Eq. (31) only in that ê∗ is estimated in the former.

PROPOSITION 6.2: Let the assumptions in Theorem 4.1 hold. Then, for any pre-

specified significance level α ∈ (0,1), the test below has asymptotically correct size control:

Reject the null in Eq. (53) if T LDAn > cLDA1−α+ς + ς,



30

where ς > 0 is an arbitrarily small positive constant and for any β ∈ (0,1) the critical

value cLDAβ is the β-quantile of ψLDA, for ψLDA a random variable defined in Eq. (84).

When Eq. (14) holds and V ar(Ld|X) is positive definite for d ∈ {0,1}, X-a.s., one can

take ς = 0 in Proposition 6.2 and the expression for ψLDA simplifies to that in Eq. (85).

When kinks might be present and the limit distribution is not guaranteed to be continuous

and strictly increasing, we take ς > 0 as in Andrews and Shi (2013). The derivation of ψLDA

uses the fact that T LDAn is formed by compositions of the max and min functions in Eq. (30)

and the max function in Eq. (53)—all of which are Hadamard directionally differentiable,

as shown in Fang and Santos (2019) and Cárcamo et al. (2020); since compositions preserve

directional differentiability (Shapiro, 1990, Proposition 3.6), an extension to the functional

Delta method can be applied to Theorem 4.1. However, standard bootstraps are inconsis-

tent due to the lack of full differentiability (see Section 3.2 of Fang and Santos, 2019).

As such, we leverage results in Fang and Santos (2019) to approximate the distribution of

ψLDA and its quantiles via a modified multiplier bootstrap procedure detailed below, sim-

ilar to that in Semenova (2023), where we denote ϕ any generic Hadamard directionally

differentiable function, ĥe∗ = ĥe∗(θ̂) ≡ [ĥE(q; θ̂), ê
∗
r, ê

∗
b ]
⊺ the vector of estimators, and

he∗ ≡ [hE(q), e
∗
r, e

∗
b ]
⊺ the vector of truths.

PROCEDURE 2—Bootstrap for the Quantiles of
√
n{ϕ

(
ĥe∗
)
− ϕ
(
he∗
)
}:

1. Draw {Wi}ni=1 i.i.d. from the exponential distribution with mean 1 independent of the

sample {(Yi,Gi,Xi)}ni=1 and construct the bootstrap analogue of ĥe∗:

h̃e∗ = h̃e∗(θ̂)≡ [h̃E(q; θ̂), ẽ
∗
r, ẽ

∗
b ]
⊺, (56)

where h̃E(q; θ̂)≡ 1
n

∑n
i=1

Wi

W
ζi(M̃q; θ̂) forW ≡ 1

n

∑n
i=1Wi, M̃ ≡ diag(1/µ̃r,1/µ̃b),

µ̃g ≡ 1
n

∑n
i=1

Wi

W
1{Gi = g}, and ẽ∗g ≡ 1

n

∑n
i=1

Wi

W

Zg
i

µ̃g
.

2. Numerically approximate ϕ′he∗(·), the directional derivative of ϕ(·) at he∗, by

ϕ̂′he∗(ḧe) =
1

sn

(
ϕ
(
ĥe∗ + sn(ḧe)

)
− ϕ

(
ĥe∗
))

,

where ḧe ∈ ℓ∞(S1)×R2 is a candidate direction at which we evaluate ϕ′he∗(·) and sn

is a vanishing sequence of step sizes such that
√
nsn →∞.
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3. Obtain ϕ̂′he∗
(√

n{h̃e∗ − ĥe∗}
)

and

ĉβ ≡ inf

{
c : P

(
ϕ̂′he∗

(√
n{h̃e∗ − ĥe∗}

)
≤ c

∣∣∣ {(Yi,Gi,Xi)}ni=1

)
≥ β

}
,

as estimators, respectively, for the limit distribution of
√
n{ϕ

(
ĥe∗
)
−ϕ
(
he∗
)
} and its

β-quantile, denoted as cβ .

The consistency of the bootstrap outlined in Procedure 2 is stated in the following result.

PROPOSITION 6.3: Under the assumptions of Theorem 4.1,

sup
f∈BL1

∣∣∣E[f(ϕ̂′he∗(√n{h̃e∗ − ĥe∗}
)) ∣∣{(Yi,Gi,Xi)}ni=1

]
−E

[
f
(
ϕ′he∗(Ghe∗)

)]∣∣∣= op(1),

where BL1 is the set of 1-Lipschitz functions f : R→ R such that |f |∞ ≤ 1 and Ghe∗ is

the Gaussian limit process of
√
n(ĥe∗ − he∗) given in Eq. (77) in Appendix A. If the cdf of

ϕ′he∗(Ghe∗) is continuous and increasing at its β-quantile, denoted cβ , then ĉβ = cβ+op(1).

The proof of Proposition 6.2 shows that ψLDA = ϕ′he∗(Ghe∗) for a particular ϕ′he∗(·) that

is the composition of the directional derivatives of the min, max, and inf functions that

constitute T LDAn . The expression of ϕ′he∗(·), given in Eq. (84), is complex and hence we

recommend the numerical approximation approach in Step 2 of Procedure 2. Under Propo-

sition 6.3, we can estimate cLDAβ , the β-quantile of ψLDA, by going through the steps in Pro-

cedure 2, where we replace ϕ(·) by the composition of the above mentioned directionally

differentiable functions accordingly. The same bootstrap procedure can be used to consis-

tently estimate the critical values put forward to carry out inference in Section 7. The use of

the infinitesimal constant ς in Proposition 6.2 and Procedure 3 accounts for the possibility

that the cdf of ϕ′he∗(Ghe∗) may not be continuous and increasing at c1−α.

6.2.1. Algorithms Yielding an LDA

An algorithm designer or a regulator may wonder if one can characterize the algorithms

yielding LDAs to a given algorithm e∗. It turns out that it is possible to do so, by combining

the algorithm that we put forward in Eq. (45) with a careful use of our characterization of F
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FIGURE 4.—The set F∗, marked in orange, is the portion of the FA-frontier yielding risk pairs preferred to e∗.

in Proposition 3.3. We illustrate the idea for the case that Eq. (14) holds and E has no kinks.

For a given risk pair e∗ induced by an algorithm a∗ ∈A such that e∗ /∈ F , by definition the

set of risk pairs e ∈ F such that e >FA e
∗ are:

F∗ ≡F ∩ C(e∗) =

{
e ∈ E :

[
max
q∈S̃1

(−hC(e)(q)− hE(−q))

]
−

= 0,

[
max

q∈{u1−u2,u2−u1,−u1,−u2}

(
q⊺e− hC(e∗)(q)

)]
+

= 0

}
. (57)

The set F∗ is depicted in Figure 4 as the orange portion of F that intersects with C(e∗).
Using the same notation as in Section 5.4, we can use a training sample {(Ỹi, G̃i, X̃i)}n1

i=1

and a construction that mimics the procedure to build the estimator of F in Eq. (29) to

obtain a consistent estimator F̂∗
n1

of F∗ (the consistency of this estimator can be established

through the same steps as in the proof of Proposition 5.1). Select ên1 ∈ F̂n1 through a

projection method detailed in the proof of Proposition 5.4 and denote by e ∈ F∗ the point

to which it converges. Let q̂∗n1
(ên1) be the consistent estimator of q∗S1(e) defined in Eq. (47).

Let ŜE ,n2(q̂
∗
n1
(ên1); θ̂n1) be defined as in Eq. (46) but with q̂∗n1

(ên1) replacing q. Then

ŜE ,n2(q̂
∗
n1
(ên1); θ̂n1) is a consistent estimator of SE(q

∗
S1(e)) ∈ F∗, by the same argument

used to establish Proposition 5.4.
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7. DISTANCE TO THE FAIREST POINT

In this section, we propose a method to build a confidence interval for the distance be-

tween the risk e∗ induced by a given algorithm and the fairest point F on the frontier, de-

noted ρ(e∗, F ), where ρ is a Hadamard directionally differentiable distance function (e.g.,

the Euclidean distance, Manhattan distance, Chebyshev distance, etc.). This can inform a

decision maker of the relative merits in promoting equity and achieving business efficiency

of different algorithms by comparing the confidence intervals on their distance to F .

Recall H45 ≡ {e ∈ R2 : er = eb} denotes the 45-degree line; let H+
45 ≡ {e ∈ R2 : er <

eb} and H−
45 ≡ {e ∈R2 : er > eb} denote, respectively, the open halfspace above and below

the 45-degree line. As shown in Section 3.3, the coordinates of F depend on whether E
intersects with H45. When Ẽ ≡ E ∩H45 ̸= ∅, as shown in Eqs. (18)-(19) we have F = u ·
hẼ (u1), with hẼ (u1) = infc∈R hE (u1(c)), u1(c)≡ u1− c[1 − 1]⊺, and u≡ (u1+u2). Note

that hẼ (·) is a Hadamard directionally differentiable function of hE(·), and its composition

with the distance function ρ is again directionally differentiable. Hence, we use our DML

estimator, Theorem 4.1, and the results in Fang and Santos (2019) to directly obtain the

limit distribution of an estimator for ρ(e∗, F ). However, when E ⊂H+
45 (respectively, E ⊂

H−
45), F is given by the support set of E in direction (u2 − u1) (respectively, (u1 − u2));

see Eqs. (15)-(16). As discussed in Remark 5.1, carrying out inference if we use DML

to directly estimate both coordinates of a support point is difficult, and therefore we use

Eq. (11) to represent F through moments that involve hE(·) only; see Eqs. (58)-(59) below.

Observe that E ⊂ H+
45 if and only if F ∈ H+

45, and E ⊂ H−
45 if and only if F ∈ H−

45, as

illustrated in Panels (b) and (d) of Figure 2. Hence, we partition the parameter space BC ,

to which F belongs Assumption 1, into three sets: B+
C ≡ BC ∩H+

45, B−
C ≡ BC ∩H−

45, and

B45
C ≡ BC ∩H45. We then have the following expressions for ρ(e∗, F ):

1. If F ∈ B45
C , ρ(e∗, F ) = ρ(e∗,u · hẼ (u1)).

2. If F ∈ B+
C , ρ(e∗, F ) = ρ(ẽ, F̃ ) for (ẽ, F̃ ) satisfying:

ẽ− e∗ = 0,

hE
(
(u2 − u1)/

√
2
)
−
(
(u2 − u1)/

√
2
)⊺
F̃ = 0,

hE(q) − q⊺F̃ ≥ 0, ∀q ∈ S1.

(58)
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3. If F ∈ B−
C , ρ(e∗, F ) = ρ(ẽ, F̃ ) for (ẽ, F̃ ) satisfying:

ẽ− e∗ = 0,

hE
(
(u1 − u2)/

√
2
)
−
(
(u1 − u2)/

√
2
)⊺
F̃ = 0,

hE(q) − q⊺F̃ ≥ 0, ∀q ∈ S1.

(59)

In each of Eqs. (58)-(59), the first condition pins down ẽ to equal e∗; the second and third

conditions restrict, respectively, F̃ to be a point on the supporting hyperplane of E in the

appropriate direction and F̃ ∈ E , which together restricts F̃ to be the support set of E in

this direction. We propose the following testing procedure:

PROCEDURE 3—Confidence Interval for ρ(e∗, F ):

1. Construct estimators ê∗ as in Eq. (54) and ĥE
(
·; θ̂
)

as in Theorem 4.1.

2. Emulate the construction in Step 1 of Procedure 1 to obtain two (1 − α)-level con-

fidence sets for (e∗, F ): let CS+
n (e

∗, F ) denote the one for the moments in Eq. (58)

(in the analog of Eq. (50), replace BC with clB+
C ), and CS−

n (e
∗, F ) the one for the

moments in Eq. (59) (in the analog of Eq. (50), replace BC with clB−
C ).7

3. For a given (ẽ, F̃ ) ∈ BC ×B45
C and ĥẼ

(
u1; θ̂

)
≡ infc∈R ĥE

(
u1(c); θ̂

)
, let:

T 45
n (ρ(ẽ, F̃ ))≡

√
n

∣∣∣∣ρ(ê∗,u · ĥẼ(u1; θ̂))− ρ(ẽ, F̃ )

∣∣∣∣ . (60)

Let ψ45 denote the random variable to which T 45
n (ρ(ẽ, F̃ )) converges in distribution

for ẽ= e∗ and F̃ = F45 ≡ u · hẼ (u1). Let c45β denote the β-quantile of ψ45 and ς > 0

an infinitesimal uniformity factor. Use test inversion to construct the confidence set:

CS45
n (ρ(e∗, F )) =

{
ρ(ẽ, F̃ ) : (ẽ, F̃ ) ∈ BC ×B45

C , T
45
n ≤ c451−α+ς + ς

}
.

The expression for ψ45 is complex and given in Eq. (91), with a simpler expression

provided in Eq. (92) for the case that Eq. (14) is satisfied and E has no kinks.

4. Obtain a confidence interval for ρ(e∗, F ) as

CSρ(e∗,F )
n ≡

{
ρ(ẽ, F̃ ) : (ẽ, F̃ ) ∈ CS+

n (e
∗, F )

⋃
CS−

n (e
∗, F )

}⋃{
CS45

n (ρ(e∗, F ))
}
.

7For a given set B, we denote by clB its closure.
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Intuitively, this construction inverts a test that jointly assesses the location of E relative

to H45 and the value of ρ(e∗, F ). For example, if F ∈ H−
45, then both CS+

n (e
∗, F ) and

CS45
n (ρ(e∗, F )) are empty with probability approaching one (recall from Section 3.3 that

infc∈R hE (u1(c)) is unbounded when F /∈ H45). Our next result shows that Procedure 3

delivers an asymptotically valid confidence interval.

PROPOSITION 7.1: Let ρ be a Hadamard directionally differentiable distance function

and the assumptions in Theorem 4.1 hold. Then the confidence interval constructed follow-

ing Procedure 3 asymptotically covers the true ρ(e∗, F ) with probability at least 1− α.

As we show in the proof, ψ45 is again a composition of Hadamard directionally differen-

tiable functions that define T ρ(ẽ,F̃ )
n in Eq. (60). We can therefore employ the same bootstrap

method detailed in Procedure 2 to consistently estimate the quantiles c45β for β ∈ (0,1),

where we replace ϕ(·) by the composition of the directionally differentiable functions, in-

cluding inf and ρ, that define T 45
n , whose exact expression we relegate to Appendix A.

8. MONTE CARLO EXPERIMENTS AND EMPIRICAL ILLUSTRATION

8.1. Monte Carlo Simulations

We evaluate the finite sample properties of the tests introduced in Sections 6-7 us-

ing two distinct data generating processes (DGPs). For both DGPs, the covariates X ≡
[X1, . . . ,X20]

⊺ ∈R20 and group identity G are drawn from the following distributions:

X2
d∼ Unif(0,1), X3

d∼Beta(2,2), G
d∼Bern (0.6) ;

for j ∈ {1,4, ...,20}, Xj
d∼N (0,1) truncated to [−3,3].

We consider two different ways of generating the outcome Y :

1. Group-balanced DGP: Y |G,X d∼Bern
(

G
1+e−(X1+X2+0.5X3)

+ (1−G)

1+e−(−X1−0.5X2+X4)

)
;

2. r-skewed DGP: Y |G,X d∼Bern
(

G
1+e−2(X1+X2+X3)

+ (1−G)

1+e−0.7(X1+0.5X2+0.6X4)

)
,

where the group-balanced DGP is such thatX is informative about Y in opposite directions

for group r (G= 1) and group b (G= 0), but its predictive power is similar across groups.

In contrast, the r-skewed DGP is such that X is systematically more informative about the
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FIGURE 5.—True feasible set E for group-balanced DGP (left) and r-skewed DGP (right), based on evaluating

SE(q) in Eq. (12) at true θ in 500 directions, with expectations approximated by averaging over 107 observations

drawn from the respective DGP. True R and B obtained similarly, using Eq. (13). True F based on evaluating

Eq. (19) at true θ and minimizing over c via stochastic gradient descent. True risk e∗ (green asterisk) induced

by the logit algorithm based Eq. (5). Shaded region: 95% confidence set for F built using 10,000 observations

drawn from the respective DGP and test inversion detailed in Section 5.2 with ∆θ estimated by logit lasso.

group-r outcome. We take the loss function to be the classification error, ℓ(d, y) = 1{d ̸=
y}. We also construct a status quo algorithm a∗, that we fix in the simulations, by training

once a logistic regression on a sample of size 10,000, with 5,000 observations from the

balanced DGP and 5,000 observations from the r-skewed DGP.8

Figure 5 depicts the population feasible set E corresponding to each DGP (pink region),

along with a 95% confidence set for the frontier F (shaded grey region), constructed using

a random sample of 10,000 observations drawn from the respective DGPs, and the risk e∗

induced by the status-quo algorithm a∗ (green asterisk). Throughout Section 8.1, we fit the

nuisance parameter ∆θ using logit lasso and 5-fold sample splitting. To assess the finite

sample properties of the LDA test in Section 6.2 and the distance-to-F test in Section 7,

we test whether e∗ is on the frontier and whether it is at a specific distance from F .

8We train the logistic regression on a mixture of group-balanced and r-skewed data so that we test for exis-

tence of an LDA to the same algorithm a∗ in both DGPs. DGP-specific logistic regressions trained on 10,000

observations drawn form that DGP for each case yield group risks e∗ very close to the ones plotted in Figure 5.
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Table I reports the simulation results. Overall, the Monte Carlo exercise suggests good

finite sample properties for our proposed tests, especially as the sample size increases. The

top panel corresponds to the test for weak group skew (Section 6.1), where the third column

reports the frequency with which the 95% confidence set for the vector (R,B) (Eq. 50)

based on the available sample fails to cover the true value of (R,B). While the r-skewed

DGP exhibits some over-rejection at n = 1,000, which is a small sample size relative to

the complexity of DML estimation with 20 covariates and estimating the support function

across directions, this over-rejection quickly disappears as sample size increases. On the

other hand, the weak group skew test (fourth column) rejects the null of weak group skew

in the balanced DGP and fails to reject it in the r-skewed DGP essentially with probabilities

1 and 0, respectively. This is not surprising because the simulation DGPs are far from the

boundary of the null, and because the test is conservative due to the projection step.

The middle panel reports the LDA test results (Section 6.2). The third (fourth) column

shows the frequency with which the population point R (B), which by definition belongs to

F , is rejected by the test of the null that it belongs to F . The fifth (sixth) column reports the

frequency with which (R+B)/2 (the risk e∗ associated with the logit algorithm a∗), which

by construction does not belong to F , is rejected by the test as an element of F . While at

small sample size (n = 1,000), the test exhibits some over-rejection for the point B, this

quickly disappears as sample size grows. At small and medium sample sizes (n = 1,000

and n= 5,000), the rejection probability for the false null that (R+B)/2 ∈ F is low for the

r-skewed DGP, while it is high at all sample sizes for the balanced DGP. This is justifiable

in light of Figure 5, which shows that in the r-skewed DGP the chord between R and B is

close to the frontier and lies largely inside its 95% confidence set. For n= 10,000, the test

detects the false nulls in columns five and six with substantially higher probability.

The bottom panel reports the results for the distance-to-F test (Section 7). This test is

more delicate because its implementation requires solving an optimization problem to esti-

mate F . Here we observe more substantial over-rejection for n= 1,000, but the distortion

gets markedly reduced as sample size increases.
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TABLE I

REJECTION RATES (1000 MONTE CARLO SIMULATIONS, α= 0.05)

Test H0 : Weak Group Skew
n DGP (R,B) /∈ CSn(R,B) H0 rejected

1,000
balance 0.035 0.999

r-skew 0.12 0

5,000
balance 0.012 1

r-skew 0.021 0

10,000
balance 0.01 1

r-skew 0.012 0

Test H0 : There Is No LDA to ẽ

n DGP ẽ=R ẽ=B ẽ=(R +B)/2 ẽ= e∗

1,000
balance 0.046 0.104 0.145 0.397

r-skew 0.051 0.236 0.073 0.162

5,000
balance 0.026 0.037 0.993 1

r-skew 0.018 0.043 0.059 1

10,000
balance 0.026 0.029 1 1

r-skew 0.007 0.039 0.264 1

Test H0 : ρ(ẽ, F ) = δ for Constant δ Equal to the True Distance
n DGP ẽ=R ẽ=B ẽ=(R +B)/2 ẽ= e∗

1,000
balance 0.242 0.273 0.251 0.159

r-skew 0.063 0.048 0.052 0.204

5,000
balance 0.081 0.097 0.088 0.051

r-skew 0.019 0.027 0.017 0.077

10,000
balance 0.069 0.078 0.073 0.046

r-skew 0.012 0.024 0.013 0.034

Population values for the balanced DGP are R= [0.286,0.638]⊺,B = [0.632,0.273]⊺, F = [0.415,0.415]⊺,

e∗ = [0.414,0.533]⊺; for the r-skewed DGP are R = [0.157,0.398]⊺,B = [0.288,0.349]⊺, F =

[0.354,0.354]⊺, e∗ = [0.373,0.442]⊺. We take ρ to be the squared Euclidean distance.

8.2. Empirical Illustration

We revisit the analysis in Obermeyer, Powers, Vogeli, and Mullainathan (2019, OPVM

henceforth), who analyze properties of the algorithm used by a research hospital to deter-

mine if a patient should be automatically enrolled in a high-risk care management program.
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The algorithm used by the research hospital aims at predicting patients’ health needs based

on total medical expenditures (the label on which the algorithm is trained). It produces a

health risk score and automatically enrolls a patient in the high-risk care management pro-

gram if that patient’s risk score exceeds the 97th percentile of all predicted scores. We

reassess this algorithm through our testing procedures. To do so, we use the synthetic

data made available by Li, Lin, and Obermeyer (2019) at GitLab to replicate all analy-

ses in OPVM. The data include 48,784 patient observations, of which 5,582 self report

as Black and the others self report as White (g ∈ {bl,wh}). The data include 149 covari-

ates, such as age, gender, comorbidity and medication variables, costs, and biomarkers, and

provide information about each patient’s number of active chronic conditions in the sub-

sequent year, viewed as the true measure of health needs of a patient. Following LLMO,

we let ℓ(d,Y ) = 1{Y ̸= d} be the classification loss and, unless explicitly stated otherwise,

Yi = 1{patient i has 6 or more chronic conditions}, with the choice of 6 driven by the

fact that it is the 97th percentile of active chronic condition numbers across patients in the

sample. We use random forests with 5,000 trees to estimate ∆θ as described in Section 4.

8.2.1. Feasible Set Estimation and Inference for the Frontier

We report in Figure 6 an estimate of the feasible set E based on Eq. (28) using 1,000 di-

rections (top-left panel), along with 100 estimated supporting hyperplanes (top-right panel),

where across all panels the horizontal (vertical) axis is the risk for Blacks (Whites), denoted

as ebl (ewh). We zoom in to show the estimated FA-frontier F̂ and its 95% confidence set

(bottom-left panel), and zoom in further to show the best risk achievable for the Black pa-

tients (bottom-right panel, red point labeled BL), which coincides with and is overlaid by

the best risk for the White patients (bottom-right panel, blue point labeled WH).

8.2.2. Hypothesis Testing

We next report the weak group skew test results in Figure 7-Panel (a), where both BL

and WH are below the 45◦ degree line and the feasible set is wh-skewed; the test fails to

reject the null of weak group skew, suggesting that implementing Pareto-dominated algo-

rithms could be justified based on the designer’s preferences over fairness and accuracy. In

https://gitlab.com/labsysmed/dissecting-bias
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FIGURE 6.—Top-left panel: Ê ; top-right panel: Ê along with one hundred supporting hyperplanes; bottom-left

panel: zoom-in to F̂ and the 95% confidence set around this frontier; bottom-right panel: further zoom-in to the

best group-specific points BL and WH, and the fairest point F .

Figure 7-Panel (b) we plot F̂ , along with its 95% confidence set. Figure 7-Panel (b) also

plots the estimated group risks associated with the original algorithm used by the hospital

(a green asterisk) and three alternative algorithms that OPVM experiment with to assess

whether different label choices yield decision rules that are more accurate and fairer than

the algorithm currently used by the hospital. One of these algorithms is trained to predict

total cost (hollow diamond with a cross in Figure 7-Panel (b)), one to predict avoidable

costs (filled diamond), and the other one to predict the number of active chronic conditions

(hollow diamond). All our tests take into account the finite sample estimation error of the

group risks induced by these four algorithms. The top panel of Table II reports the values

of the LDA test statistics and the associated critical values that we compute for the four

algorithms considered by OPVM. The hypothesis that the original algorithm yields group

risks on the frontier is rejected, and so is the same hypothesis for group risks associated
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(a) Candidate values for (BL,WH) (b) 3 experimental algorithms

FIGURE 7.—Panel (a): Plum-colored (respectively, light-blue colored) circles correspond to candidate values

for the best point for Blacks BL (Whites WH) sampled from a normal distribution centered at the estimated BL

(WH), and red (blue) diamonds correspond to non-rejected values. Panel (b): F̂ along with its 95% confidence

set and the estimated group risks for four algorithms considered by OPVM: the original algorithm used by the

hospital (asterisk); one that predicts total cost (hollow diamond with a cross); one that predicts avoidable costs

(filled diamond); and one that predicts the number of active chronic conditions (hollow diamond).

with the algorithm trained to predict total costs. On the other hand, we fail to reject that the

algorithms trained to predict avoidable costs and the number of active chronic conditions

yield group risks on the FA-frontier. Regarding the three algorithms proposed by OPVM, if

one were to plot the set C∗ corresponding to the original algorithm, it would be immediate

to see that one cannot reject the hypothesis that all other algorithms considered by OPVM

improve upon it, both in terms of fairness and accuracy.

The bottom panel of Table II shows that the closest risk to F is the one associated with

the algorithm predicting total costs. However, all confidence intervals overlap.

8.2.3. Performance of Algorithms Constructed to Be on a Constrained Frontier

Finally, we compare various outcomes associated with the algorithms considered by

OPVM with those of decision rules resulting from the algorithms that we propose in Sec-

tion 5.4. To do so, we randomly split the sample into two halves, and use one half (training

data) to estimate the nuisance parameter ∆θ, and implement Eq. (45) on the other half

(evaluation data) for the following choices of q:
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TABLE II
RESULTS FOR THE LDA TEST AND CONFIDENCE SETS FOR THE DISTANCE TO F (FOR α= 0.05)

Test H0 : There Is No LDA
Original Total Costs Avoid. Costs Act. Chr. Cond.

Estimated Risks (0.065,0.034) (0.059,0.033) (0.054,0.023) (0.037,0.015)

Test Statistic 3.767 2.753 1.428 0.541

Critical Value 1.885 1.948 1.732 1.642

Conclusion Rejected Rejected Not Rejected Not Rejected

Distance to F = (0.049,0.049)

Estimated Distance 0.0005 0.0004 0.0007 0.0013

Confidence Set (0.000,0.001) (0.000,0.001) (0.000,0.002) (0.000,0.003)

Top panel: LDA test statistics and 0.05-level critical values associated with the original algorithm and the

three experimental algorithms (predicting, respectively, total costs; avoidable costs; number of active chronic

conditions) analyzed by OPVM. Bottom panel: estimated squared-Euclidean distance to the F point and cor-

responding confidence set for this distance.

(i) q = [−1 0]⊺, yielding an algorithm that (asymptotically) achieves the best point on

F for Black patients, which we call Rawlsian because ebl > ewh at BL.

(ii) q = [0 −1]⊺, yielding an algorithm that (asymptotically) achieves the best point on F
for White patients, which we call Majority as Whites are the majority of the sample.

(iii) q̂(F̂ ), yielding an algorithm based on a direction estimated using the entire sample that

(asymptotically) achieves F , the fairest point on F , as established in Proposition 5.4,

which we call Egalitarian.

(iv) q =−
√
2
2 [1 1]⊺, yielding an algorithm that weighs both groups equally, which we call

Utilitarian as it can be expressed as a generalization of the Utilitarian rule.

Throughout, we recognize that to compare algorithms we should enforce a global capacity

constraint on the total percentage of patients assigned to the high-risk case management

program, so that variation across algorithms is not confounded with a possibly more gener-

ous care program. To enforce the capacity constraint, we need to require the algorithms to

satisfy
∫
a(x)dPX ≤ ā for some known constant ā. For example, ā = 0.03 when compar-

ing with the algorithm currently used by the hospital which assigns only patients with risk

score above the 97th percentile to the high-risk care program. Recall from the discussion
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following Proposition 3.1 that without capacity constraints, we have

hE(q) = E
[
q1

θr0(X)
µr

+ q2
θb0(X)
µb

]
+ max

a∈A(X )
E [a(X)k (θ(X),Mq)] . (61)

When A(X ) is constrained to only include algorithms such that
∫
a(x)dPX ≤ ā, maxi-

mization in Eq. (61) is achieved by setting

aopt(X; q) = 1{k (θ(X),Mq)>max(0,quantk(θ(X),Mq)(1− ā))}, (62)

for quantk(θ(X),Mq)(α) the α-quantile of k(θ(X),Mq) and k(θ(X),Mq) as in Eq. (22).9

In words, for our example with ā = 0.03, high-risk care management is assigned to those

patients with positive values of k(θ(X),Mq) that exceed its 97th percentile.

The results of our first exercise are reported in Figure 8. The top panel replicates Figure

1-(a) in OPVM, and shows that at each percentile of the original algorithm’s risk score

(the horizontal axis), Black patients have a substantially larger number of active chronic

conditions (the vertical axis) than White patients.10 Even among patients automatically

enrolled in the high-risk care management program (those with a risk score above the 97th

percentile), Black patients appear to be in worse health than White patients.

We ask whether the algorithms that we propose are able to select for treatment patients

that, in fact, exhibit substantially worse health outcomes one year later. The bottom four

panels in Figure 8 plot, for each of the algorithms described at the beginning of this section,

the number of active chronic conditions for (a) Black patients that our algorithm does not

assign to the high-risk care program (dash-dotted, light-purple line); (b) White patients that

our algorithm does not assign to the high-risk care program (solid salmon line); (c) Black

patients that our algorithm assigns to the high-risk care program (dash-dotted, dark-purple

line); (b) White patients that our algorithm assigns to the high-risk care program (solid

9In this case, the constrained feasible set is Ecoā ≡
{(

er(a), eb(a)
)
∈R2 : a ∈A(X ) and

∫
a(x)dPX ≤ ā

}
, a

convex subset of E , and the algorithms in Eq. (62) is on its frontier.
10The top panel of Figure 8 is not identical to Figure 1-(a) of OPVM because it is plotted using the synthetic

data, instead of the real data, and because the code used to generate Figure 1-(a) of OPVM had an error that was

later corrected after the publication of OPVM; see the documentation of Li et al. (2019) for more details.
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orange line). For comparability with the top panel, on the horizontal axis we continue to

report the risk score produced by the algorithm used by the hospital.

The main takeaway from Figure 8 is that our four proposed algorithms, which use group

identity to estimate ∆θ but not for treatment assignment, are successful at selecting for

treatment patients who, one year later, experience substantially worse health outcomes.

Moreover, with the Ralwsian, Majority, and Utilitarian algorithms, Black and White pa-

tients assigned to treatment have similar numbers of chronic conditions. Only the Egali-

tarian algorithm shows notable disparities for patients with hospital risk scores below the

70th percentile. We think this result might be due to two factors: estimation of F is chal-

lenging and hence the direction q̂(F̂ ) might be imprecisely estimated; and the feasible set

is wh-skewed and hence the Egalitarian algorithm leads to a Pareto-dominated outcome.

Our last exercise aims at further assessing the extent to which our proposed algorithms

may reduce the substantial disparities between Black and White patients in the current pro-

gram screening practices documented by OPVM. To illustrate the potential for improve-

ment over the hospital’s algorithm, OPVM simulate “a counterfactual world with no gap

in health conditional on risk” (p.3). They construct an infeasible, couterfactual algorithm

that uses group identity and patients’ ex-post active chronic health conditions to find the

sickest Black patient with health risk score just below a threshold (the “inframarginal Black

patient”) and the healthiest White patient with health risk score just above the same thresh-

old (the “supramarginal White patient”). If the number of chronic health conditions of the

inframarginal Black patient is larger than that of the supramarginal White patient, they iter-

atively swap them until the number of chronic health conditions of the inframarginal Black

patient equals that of the supramarginal White patient. OPVM find that at all risk thresholds

α above the median, the counterfactual algorithm increases the fraction of Black patients

treated. Table III, columns 2-3, show that across the various thresholds for automatic en-

rollment in the program that we consider, the fraction of Black patients would rise between

6 and 41 percentage points.11

11In columns 2-3, the fractions reported are based on a denominator that equals the total number of patients

with risk scores above a certain percentile of risk scores, e.g., the 55th percentile, with this threshold viewed as
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FIGURE 8.—Average number of active chronic conditions within each risk-score percentile bin by treatment

group under the alternative algorithms on the FA frontier subject to 3% capacity constraint, averaged across 20

replications of the 50-50 split.
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TABLE III

FRACTION OF BLACK PATIENTS TREATED AMONG ALL TREATED

Algorithms from Obermeyer et al. Algorithms on the FA-Frontier
Capacity Threshold Original Counterfactual Rawlsian Majority Egalitarian Utilitarian

55 0.120 0.184 0.164 0.164 0.160 0.164

69 0.128 0.255 0.185 0.184 0.163 0.185

82 0.138 0.327 0.206 0.207 0.160 0.206

89 0.151 0.407 0.218 0.223 0.166 0.219

94 0.167 0.498 0.286 0.262 0.190 0.273

97 0.184 0.592 0.368 0.300 0.253 0.338

The distribution of the number of active chronic conditions is such that the 55th to the 68th percentiles all

correspond to 1 active chronic condition, the 69th-81st correspond to 2, the 82nd-88th correspond to 3, the

89th-92nd correspond to 4, the 94th-95th correspond to 5, and the 96th-97th correspond to 6.

We ask how much of this gap could be filled if one were to use our algorithms, which

are feasible and do not rely on ex-post knowledge of the number of active chronic condi-

tions nor on using group identity for assignment to the high-risk care program. The results,

reported in Table III, columns 4-7,12 show that each of our four algorithm yields an in-

crease in the fraction of Black patients treated at all capacity thresholds. The Rawlsian and

the Utilitarian algorithms yield the largest increases, ranging between 4 and 18 percentage

points across the various capacity thresholds. This shows that these two feasible, easy to

implement algorithms can close between 26%−69% of the gap between the algorithm that

the hospital uses and the counterfactual, infeasible algorithm simulated by OPVM.

We conclude by noting that results based on random forests trained using the grf pack-

age are not guaranteed to reproduce exactly across platforms, even with the same seed (all

simulations and estimation are in R). This is a known feature of grf (see the reference man-

ual). Similarly, tests based on optimization via stochastic gradient descent implemented by

the threshold above which the patient is automatically enrolled in the high-risk care program, and a numerator

that equals the number of Black patients with risk score above that percentile.
12For each algorithm, the fraction of Black patients treated at each capacity threshold is computed as the

following ratio. The denominator equals the total number of patients treated under a given algorithm, e.g., the

Rawlsian algorithm, subject to the constraint that at each threshold ā ∈ [0.55,0.97] at most 100(1− ā)% of the

evaluation sample is treated, and for each threshold ā the outcome Y equals the indicator of whether the number

of active chronic conditions exceeds the ā-quantile of the distribution of the number of active chronic conditions.

https://grf-labs.github.io/grf/REFERENCE.html#forests-predict-different-values-depending-on-the-platform-even-though-the-seed-is-the-same
https://grf-labs.github.io/grf/REFERENCE.html#forests-predict-different-values-depending-on-the-platform-even-though-the-seed-is-the-same
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the torch package are not exactly reproducible, even after seed setting, which affects the

F estimator and thus the distance-to-F test (see the repository discussion). To assess sensi-

tivity of our results to these features, we repeat the entire empirical exercise 20 times with

different seeds. Appendix C reports results and includes a robustness check using logit lasso

for estimating the nuisance function.13 While the results exhibit some nontrivial variation

across seeds (although the qualitative results are unchanged), we view this as expected,

considering that the nonparametric estimation step involves 149 covariates against a total

sample size of 48,784 and a minority group of size 5,582.

9. CONCLUSION

We provide a consistent nonparametric estimator for a theoretical fairness-accuracy fron-

tier proposed by LLMO and algorithms that attain points on this frontier. We obtain the

estimator through judicious use of the separating hyperplane theorem and the support func-

tion of the (convex) feasible set of expected losses associated with all possible algorithms,

a portion of whose boundary coincides with the FA-frontier. We provide a DML estimator

of the support function and show it converges to a tight Gaussian process as sample size

increases. We formulate important policy-relevant hypotheses that have received much at-

tention in the fairness literature as restrictions on the support function and construct valid

test statistics. We provide an estimator for the distance between a given algorithm and the

fairest point on the frontier. We carry out a Monte Carlo exercise that illustrates the good

finite sample properties of our method, and demonstrate its practical relevance by revisit-

ing the empirical analysis in OPVM. Our results show that the algorithm that a research

hospital employs to screen patients for high-risk care is not on the frontier. Our proposed

algorithms substantially improve over this status quo in terms of both fairness and accuracy.
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APPENDIX A: PROOFS OF MAIN RESULTS

A.1. Proofs for Section 3

PROOF OF PROPOSITION 3.1: As shown in the discussion leading to Eq. (8), E =

{E[Mϑ(X)] : ϑ(X) ∈ Λ(X)} = E [MΛ(X)], where Λ(X) ≡ conv ({θ0(X),θ1(X)}),
with θd(X) defined in (6) for d ∈ {0,1}. Hence, MΛ(X) is a random compact in-

terval (Molchanov and Molinari, 2018, Example 1.11), and E [MΛ(X)] is its Aumann

expectation (Molchanov and Molinari, 2018, Def. 3.1), which is well defined because

Λ(X) is an integrable random convex set owing to E[|θgd(X)|] ≤ E[|θgd(X)|2]1/2 ≤
E
[
(Lg

d)
2
]1/2

<
√
c2 <∞ for any d ∈ {0,1}, g ∈ {r, b} by Assumption 1. It follows that

hE(q) = hE[MΛ(X)](q) = E[hMΛ(X)(q)] (Molchanov and Molinari, 2018, Theorem 3.11).

Observe that

hMΛ(X)(q)≡ max
ϑ(X)∈Λ(X)

(Mq)⊺ϑ(X) = max{(Mq)⊺θ0(X), (Mq)⊺θ1(X)}, (63)

where the last equality in Eq. (63) is well-known in the literature (e.g., Rockafellar, 1997,

p. 105). Taking the expectation with respect to P(X) yields the first line of Eq. (10), which
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we can re-write as

hE(q) = E
[
(Mq)⊺θ0(X) + (Mq)⊺

(
θ1(X)− θ0(X)

)
1
{
(Mq)⊺

(
θ1(X)− θ0(X)

)
> 0
}]
.

The law of iterated expectations yields the expression in the second line of Eq. (10). Q.E.D.

PROOF OF PROPOSITION 3.2: The following proof closely follows the argument from

Chandrasekhar et al. (2018, Lemma 3). Take any ∥δ∥E → 0,

1

∥δ∥E

(
E
[(
M(q + δ)

)⊺
θ0 + k

(
θ,M(q + δ)

)
1
{
k
(
θ,M(q + δ)

)
> 0
}]

−E
[
(Mq)⊺θ0 + k(θ,Mq)1{k(θ,Mq)> 0}

])

=
δ⊺

∥δ∥E
E
[
Mθ0 +M(θ1 − θ0)1{k(θ,Mq)> 0}

]
+

1

∥δ∥E
E[R(q, δ)],

where
R(q, δ)≡

(
M(q + δ)

)⊺
(θ1 − θ0)1

{
k(θ,Mq)≤ 0< k

(
θ,M(q + δ)

)}
−
(
M(q + δ)

)⊺
(θ1 − θ0)1

{
k(θ,Mq)> 0≥ k

(
θ,M(q + δ)

)}
=⇒ sup

q∈S1
E[|R(q, δ)|]≲ ∥δ∥E ·

∥∥θ1 − θ0
∥∥
L2(P) · sup

q∈S1

∥∥∥∥1{|k(θ,Mq)|< |k(θ,Mδ)|
}∥∥∥∥

L2(P)

≲ ∥δ∥E · sup
q∈S1

P
(
|k(θ,Mq)|< |k(θ,Mδ)|

)1/2
≲ ∥δ∥E

(
∥δ∥m/2

E + ∥δ∥1/2E

)1/2
where the first inequality follows from Hölder’s inequality and that, for eachX , conditional

on the event |k(θ,Mq)|< |k(θ,Mδ)|, we have |
(
M(q + δ)

)⊺
(θ1 − θ0)| ≤ 2|Mδ⊺(θ1 −

θ0)| ≤ 2∥Mδ∥E∥θ1−θ0∥E ≲ ∥δ∥E∥θ1−θ0∥E ; the second inequality follows from
∥∥θ1−

θ0

∥∥
L2(P) <∞ by Assumption 1. The last inequality follows from

sup
q∈S1

P
(
|k(θ,Mq)|< |k(θ,Mδ)|

)
≤ sup

q∈S1
P
(
|k(θ,Mq)|< ∥δ∥1/2E

)
+ P
(
|k(θ,Mδ)| ≥ ∥δ∥1/2E

)
≲ ∥δ∥m/2

E + ∥δ∥1/2E , (64)

where the last line follows because supq∈S1 P
(
|k(θ,Mq)|

)
≲ ∥δ∥m/2

E by Assumption

2 and P
(
|k(θ,Mδ)| ≥ ∥δ∥1/2E

)
≤ ∥Mδ∥EE[∥θ∥E ]

∥δ∥1/2E

≲ ∥δ∥1/2E by Markov’s inequality and
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Assumption 1. Hence, supq∈S1
1

∥δ∥E
E[R(q, δ)] ≤ supq∈S1

1
∥δ∥E

E[|R(q, δ)|] ≲ (∥δ∥m/2
E +

∥δ∥1/2E )1/2 → 0 and Eq. (12) follows from applying the law of iterated expectations.

Next, the claim that ∇qhE(q) = SE(q) follows from Schneider (1993, Corollary 1.7.3).

Finally, uniform continuity of SE(q) follows from continuity over compact S1. Q.E.D.

PROOF OF PROPOSITION 3.3: By definition of F and C(e∗), e∗ ∈ F if and only if

C(e∗) ∩ E = {e∗}. Suppose e∗ ∈ F . Then relint(C(e∗)) ∩ relint(E) = ∅. Since both C(e∗)
and E are nonempty convex sets, by Schneider (1993, Theorem 1.3.8) C(e∗) and E are

properly separated. Hence, there exists q ∈ S1 and z ∈R such that

∀ ẽ ∈ C(e∗), ẽ⊺q ≤ z and ∀ e ∈ E , e⊺(−q)≤−z.

Since e∗ ∈ C(e∗) ∩ E , we have e∗⊺q = z and hC(e∗)(q) = −hE(−q) = z. For the other di-

rection, suppose there exists q ∈ S1 such that hC(e∗)(q) = −hE(−q). By definition, e∗ is

feasible and e∗ ∈ C(e∗) ∩ E . If there exists e′ ∈ C(e∗) ∩ E but e′ ̸= e∗, then q⊺e′ = q⊺e∗ =

−hE(−q). This means that the support set of E in direction −q is not a singleton, con-

tradicting Assumption 2, under which E has a smooth boundary. To obtain the charac-

terization of F in Eq. (21), for B1 ≡ {q : ∥q∥E ≤ 1}, note that the optimization problem

maxq∈B1(−hC(e∗)(q) − hE(−q)) is dual to the primal problem minẽ∈C(e∗),e∈E ∥ẽ − e∥E ,

which measures the distance between C(e∗) and E . When e∗ ∈ E , this distance is zero, and

weak duality along with S1 ⊂ B1 imply maxq∈S1(−hC(e∗)(q)−hE(−q))≤ 0. Hence, when

e∗ /∈ F we must have supq∈S1(−hC(e∗)(q)−hE(−q))< 0. Since hC(e∗)(q) = supe∈C(e∗) q
⊺e

is unbounded for any q such that q1 + q2 < 0, it is without loss of generality to focus on

q ∈ S̃1 and to use the criterion
[
maxq∈S̃1(−hC(e∗)(q)− hE(−q))

]
−
= 0. Q.E.D.

A.2. Proofs for Section 4

In the proofs that follow, recall

ζi(M̊q;ϑ)≡ (M̊q)⊺L0i + (M̊q)⊺(L1i −L0i) · 1
{
k
(
ϑ(Xi),M̊q

)
> 0
}
.
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defined in Eq. (23), where k
(
ϑ(Xi),M̊q

)
= q⊺M̊∆ϑ(Xi) is given in Eq. (22) for generic

∆ϑ(Xi) ∈Θ and M̊. For ∆̂θ and M̂ estimated as per Definition 1, recall

ζi(M̂q; θ̂) = (M̂q)⊺L0i + (M̂q)⊺(L1i −L0i) · 1
{
k
(
θ̂(Xi),M̂q

)
> 0
}

for k
(
θ̂(Xi),M̂q

)
= q⊺M̂∆̂θ(Xi) as in Eqs. (25)-(26).

PROOF OF PROPOSITION 4.1: Apply the law of iterated expectations,

E
[
ζi
(
Mq;θ+ t(ϑ− θ)

)]
−E

[
ζi(Mq;θ)

]
=E

[(
1
{
(Mq)⊺(∆θ+ t(∆ϑ−∆θ))≥ 0

}
− 1

{
(Mq)⊺∆θ ≥ 0

})
(Mq)⊺∆θ

]
. (65)

In what follows, we show Eq. (65) is bounded in absolute value by t(tm/2 + t1/2)1/2 for m

in Assumption 2, uniformly in q ∈ S1. It then follows that, for all q ∈ S1,

lim
t→0

1

t

∣∣(E[ζi(Mq;θ+ t(ϑ− θ)
)]

−E
[
ζi(Mq;θ)

])∣∣≲ lim
t→0

1

t
· t(tm/2 + t1/2)1/2 = 0.

The term in Eq. (65) is non-zero if and only if the indicator involving ∆θ + t(∆ϑ−∆θ)

equals 1 and that involving ∆θ equals 0, or vice versa; this happens on a subset of events

{
(Mq)⊺∆θ ≤ 0< (Mq)⊺(∆θ+ t(∆ϑ−∆θ))

}⋃{
(Mq)⊺∆θ > 0≥ (Mq)⊺(∆θ+ t(∆ϑ−∆θ))

}
,

which implies the event
{
|(Mq)⊺∆θ|< t|(Mq)⊺(∆ϑ−∆θ)|

}
. It then follows that

|Eq. (65)| ≤ E
[
1

{
|(Mq)⊺∆θ|< t|(Mq)⊺(∆ϑ−∆θ)|

}∣∣(Mq)⊺∆θ
∣∣]

≤ E
[
1

{
|(Mq)⊺∆θ|< t|(Mq)⊺(∆ϑ−∆θ)|

}
· t
∣∣(Mq)⊺(∆ϑ−∆θ)

∣∣]
≲ t(tm/2 + t1/2)1/2,

where the last line follows from Hölder’s inequality, Assumption 2, and sup∆ϑ∈Θ ∥∆ϑ−
∆θ∥L2(P) <∞, using a similar argument to that of Eq. (64). Q.E.D.
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PROOF OF THEOREM 4.1: Part 1. We begin by showing that for any fixed q ∈ S1,

√
n

(
ĥE(q; θ̂)− hE(q;θ)

)
=Gn[ζ

∗
i (Mq;θ)] + op(1), (66)

where for a generic measurable function t ∈ T of random variable Oi, Gn[t(Oi)] ≡
n−1/2

∑n
i=1

(
t(Oi)−E[t(Oi)]

)
denotes the empirical process indexed by the function class

T . For 2× 2 matrices M̌ and M̊, let

ξS,i(M̌;M̊q;ϑ)≡ M̌L0 + M̌(L1 −L0)1{k(ϑ,M̊q)> 0}. (67)

To show Eq. (66), fix q ∈ S1 and decompose

√
n

(
ĥE(q; θ̂)− hE(q)

)
=
√
n

(
1

n

n∑
i=1

q⊺
(
M̂M−1

)(
ξS,i(M;M̂q; θ̂)−E[ξS,i(M;Mq;θ)]

))
︸ ︷︷ ︸

≡A

+
√
nq⊺
(
M̂M−1 − I

)
E[ξS,i(M;Mq;θ)],︸ ︷︷ ︸

≡B

where I is the 2× 2 identity matrix, and

A=Gn[ζi(Mq;θ)] + op(1)

+

{√
n

(
1

n

n∑
i=1

(Mq)⊺
(
L0i + (L1i −L0i)1{k(θ̂,M̂q)> 0}

)
−E

[
(Mq)⊺

(
L0i + (L1i −L0i)1{k(θ̂,M̂q)> 0}

)])
−
√
n

(
1

n

n∑
i=1

ζi(Mq;θ)−E[ζi(Mq;θ)]

)}
︸ ︷︷ ︸

≡R1

(68)

+
√
n

(
E
[
(Mq)⊺

(
L0i + (L1i −L0i)1{k(θ̂,M̂q)> 0}

)]
−E[ζi(Mq;θ)]

)
︸ ︷︷ ︸

≡R2

, (69)

where the equality follows from ∥M̂M − I∥max = Op(n
−1/2) under the theorem’s as-

sumptions and adding and subtracting terms andR1 is an empirical process term indexed by
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∆ζi
(
q; θ̂,M̂

)
≡ (Mq)⊺(L1i−L0i)1

{
k
(
θ̂,M̂q

)
> 0
}
−(Mq)⊺(L1i−L0i)1

{
k
(
θ,Mq

)
>

0
}

. Recall that k(θ̂,M̂q) = q⊺M̂∆̂θ, where ∆̂θ(Xi) = ∆̂θk(Xi) for i ∈ Ik. Fixing any

k ∈ [K] and conditional on the Ick sample, ∆θ̂k is non-stochastic and

E[R2
1 | Ick]≲ sup

∆ϑ∈Θn

E
[
∆ζi
(
q; θ̂,M̂

)2]
= sup

∆ϑ∈Θn

E
[(
(Mq)⊺(L1i −L0i)

)2 ∣∣∣1{q⊺M̂∆ϑ> 0} − 1{q⊺M∆θ > 0}
∣∣∣]

≲ sup
∆ϑ∈Θn

E
[(
(Mq)⊺(L1i −L0i)

)2
1
{
|q⊺M∆θ|< |q⊺(M̂∆ϑ−M∆θ)|

}]
≲ sup

∆ϑ∈Θn

P
(
|q⊺M∆θ|< |q⊺(M̂∆ϑ−M∆θ)|

)
= op(1), (70)

where the first inequality follows from Chernozhukov et al. (2018, Proof of Theorem 3.1

and Lemma 6.1), the third inequality follows by Assumption 1, and the last equality follows

from the definition of Θn, ∥M̂ −M∥max = Op(n
−1/2), and a similar argument to that of

Eq. (64). Hence |R1|= op(1). In addition, by Proposition 4.1,R2 encapsulates higher-order

Gateaux derivatives and can be bounded by

|R2|≲
√
nE
[
1

{
|q⊺M∆θ|< |q⊺(M̂∆̂θ−M∆θ)|

}
|q⊺M∆θ|

]
︸ ︷︷ ︸

R3

,

and we show |R3| = op(n
−1/2) by leveraging the proof technique from Semenova (2023,

Lemma 4.1) under Assumption 3. It then follows that |R2|= op(1).

Under Assumption 3, for g ∈ {r, b} and the k-th fold,∣∣∣∣(∆̂θg)k(X)

µ̂g
− ∆θg(X)

µg

∣∣∣∣
≲

∣∣∣∣(α̂g)k
µ̂g

− αg

µg

∣∣∣∣+ ∣∣∣∣(β̂g)kµ̂g
− βg

µg

∣∣∣∣+ ∣∣∣∣(η̂g)k(X[3:dX ])

µ̂g
−
ηg(X[3:dX ])

µg

∣∣∣∣≡ δgk(X[3:dX ]),

where ≲ follows from the assumption that (X1,X2) has bounded support. Let δk(X[3:dX ])≡∑
g∈{r,b} δ

g
k(X[3:dX ]). Denote the distribution of |q⊺M∆θ(X)| conditional on X[3:dX ]

by P(|q⊺M∆θ|
∣∣X[3:dX ]

). Conditional on X and the sample Ick, |q⊺(M̂∆̂θk − M∆θ)| ≤
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∥M̂∆̂θk −M∆θ∥E ≲ δk(X[3:dX ]), and

|R3|≲ EX[3:dX ]

[∫ δk(X[3:dX ])

−δk(X[3:dX ])
δk(X[3:dX ])P(|q⊺M∆θ|

∣∣X[3:dX ]

)]≲ EX[3:dX ]

[
δk(X[3:dX ])

2
]
= op(n

−1/2),

where the second inequality follows from Assumption 3 that P(|q⊺M∆θ|
∣∣X[3:dX ]

) is

bounded, and the last equality follows from ∆̂θk ∈ Θn as n → ∞, ∥M̂ − M∥max =

Op(n
−1/2), and repeated application of triangle inequality. Therefore,

A=Gn[ζi(Mq;θ)] + op(1).

In addition,

B =
√
n
(
(M̂−M)q

)⊺M−1SE(q) =Gn[(M∗
i q)

⊺M−1SE(q)] + op(1)

for M∗
i ≡ diag

(
1{Gi=r}

−µ2
r

, 1{Gi=b}
−µ2

b

)
by the Delta method. We hence conclude

√
n

(
ĥE(q; θ̂)− hE(q;θ)

)
=Gn[ζ

∗
i (Mq;θ)] + op(1)

for ζ∗i (Mq;θ)≡ ζi(Mq;θ) + (M∗
i q)

⊺M−1SE(q).

Part 2. Since the class of functions over the random variables (L1i ,L0i ,Xi),

Z ≡
{
ζ∗i (Mq;θ) : q ∈ S1

}
,

is composed of linear functions (linear in q ∈ S1) and their indicators, Z is VC-subgraph

(see, for example, Andrews, 1994). An envelope function of Z is∑
d∈{0,1},g∈{r,b}

(|Lg
di
|+C)/c1. (71)

As C and c1 are constant and Lg
di

is square-integrable, Eq. (71) is square-integrable under

P. By van der Vaart and Wellner (1996, Theorem 2.5.2), Z is P-Donsker, and hence

√
n

(
ĥE(q; θ̂)− hE(q)

)
=G[ζ∗i (Mq;θ)] + op(1) in ℓ∞(S1).
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Part 3. The fact that V ar (G[ζi(q;θ)]) > 0 for each q ∈ S1 follows using the variance

decomposition formula and the same argument as in Beresteanu and Molinari (2008, proof

of Theorem 4.3-(ii), p.808). Q.E.D.

A.3. Proofs for Section 5

PROOF OF PROPOSITION 5.1: Recalling the definition of the set Q∗
T(e), T ∈ {S1, S̃1}

in Proposition 5.3, by the same argument as in the proof of Proposition 5.3 below,[√
nmax

q∈S1
(q⊺e− ĥE(q; θ̂))

]
+

d−→

 sup
q∈Q∗

S1
(e)

G[−ζ∗i (Mq;θ)]


+

.

Applying the argument in the proof of Proposition 6.2 to the second maximization problem

in the definition of TF
n in Eq. (31), we have

ψF (e) =

 sup
q∈Q∗

S1
(e)

G[−ζ∗i (Mq;θ)]


+

+

 sup
q∈Q∗

S̃1
(e)

G[−ζ∗i (−Mq;θ)]


−

. (72)

When Eq. (14) holds, E has no kinks or flat faces (by Assumption 2); hence under the null:

Q∗
S1(e) = argmax

q∈S1
(q⊺e− hE(q)) =

{
q∗S1(e)

}
, Q∗

S̃1(e) = argmax
q∈S̃1

(
−hC(e)(q)− hE(−q)

)
≡ {q∗S̃1(e)}.

Under the null e ∈ F , (q∗S1(e))
⊺e − hE(q

∗
S1(e)) = 0 and e = SE(q

∗
S1(e)); since e ∈ F ,

−(q∗S̃1(e))
⊺e − hE(−q∗S̃1(e)) = 0, so that e = SE(−q∗S̃1(e)). By Eq. (14) kinks are absent,

and hence q∗S1(e) =−q∗S̃1(e). We therefore obtain the expression in Eq. (32), as

ψF (e) =
[
G[−ζ∗i (Mq∗S1(e);θ)]

]
+
+G

[
−ζ∗i (Mq∗S1(e);θ)

]
− =

∣∣G [ζ∗i (Mq∗S1(e);θ)
]∣∣ .

Eq. (35) follows by standard arguments.

We establish Eq. (34) by verifying Condition C.1 in Chernozhukov et al. (2007), under

which Eq. (34) follows from their Theorem 3.1-(1). By definition, the parameter space BC

is a compact (and convex) set. Our criterion function is

f(e)≡
[
max
q∈S1

(q⊺e− hE(q))

]
+

+

[
max
q∈S̃1

(−hC(e)(q)− hE(−q))

]
−

,
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and the population set is F = {e ∈ BC : f(e) = 0}. The criterion function f(e) is lower-

semicontinuous by Berge’s Maximum Theorem and composition with a continuous func-

tion. The sample criterion function

f̂(e)≡
[
max
q∈S1

(q⊺e− ĥE(q; θ̂))

]
+

+

[
max
q∈S̃1

(−hC(e)(q)− ĥE(−q; θ̂))

]
−

takes values in R+ and is jointly measurable in the parameter e ∈ E and the data by stan-

dard arguments. Finally, by Proposition 6.2, supe∈BC

(
f(e)− f̂(e)

)
+
= Op(1/

√
n) and

supe∈F f̂(e) =Op(1/
√
n). Q.E.D.

PROOF OF PROPOSITION 5.2: Recall that by Proposition 3.2, SE(q) = E
[
ζS(Mq;θ)

]
for ζS(Mq;θ)≡ML0+M(L1−L0)1{k(θ,Mq)> 0}. Using the notation ξS,i(M̌;M̊q;ϑ)

defined in Eq. (67), we have:

∥∥∥ŜE(q; θ̂)−SE(q)
∥∥∥= ∥∥∥∥∥ 1n

n∑
i=1

ζS,i(M̂q; θ̂)−SE(q)

∥∥∥∥∥
≤
∥∥∥M̂M−1

∥∥∥∥∥∥∥∥ 1n
n∑

i=1

ξS,i(M;M̂q; θ̂)−E
[
ξS,i(M;Mq;θ)

]∥∥∥∥∥
+
∥∥∥(M̂M−1 − I

)
E[ζS,i(Mq;θ)]

∥∥∥
≤

∥∥∥∥∥ 1n
n∑

i=1

ξS,i(M;Mq;θ)−E
[
ξS,i(M;Mq;θ)

]∥∥∥∥∥ (73a)

+

∥∥∥∥∥
(
1

n

n∑
i=1

ξS,i(M;M̂q; θ̂)−E
[
ξS,i(M;M̂q; θ̂)

])

−

(
1

n

n∑
i=1

ξS,i(M;Mq;θ)−E
[
ξS,i(M;Mq;θ)

])∥∥∥∥∥ (73b)

+

∥∥∥∥∥ 1n
n∑

i=1

E
[
ξS,i(M;M̂q; θ̂)

]
−E

[
ξS,i(M;Mq;θ)

]∥∥∥∥∥+ op(1), (73c)

where the op(1) term in line (73c) follows as ∥M̂M−1 − I∥max = Op(n
−1/2). The term

in Eq. (73a) equals op(1) by the Law of Large Numbers. Using that E [M(L1 −L0)|X] =
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M(θ1(X)−θ0(X)) = [−u⊺1M∆θ(X), −u⊺2M∆θ(X)]⊺ and omitting dependence on X

to shorten notation, we have that the first term of Eq. (73c) is upper bounded by

sup
∆ϑ∈Θn

∥∥∥E[M(L1i −L0i)
(
1
{
q⊺M̂∆ϑ> 0

}
− 1
{
q⊺M∆θ > 0

})]∥∥∥
= sup

∆ϑ∈Θn

∥∥∥E[[−u⊺1M∆θ, − u⊺2M∆θ]⊺
(
1
{
q⊺M̂∆ϑ> 0

}
− 1
{
q⊺M∆θ > 0

})]∥∥∥
≲ sup

∆ϑ∈Θn

max
v∈{−u1,−u2}

∣∣∣E[v⊺M∆θ
(
1
{
q⊺M̂∆ϑ> 0

}
− 1
{
q⊺M∆θ > 0

})]∣∣∣
≤ sup

∆ϑ∈Θn

max
v∈{−u1,−u2}

E
[∣∣v⊺M∆θ

∣∣1{∣∣q⊺M∆θ
∣∣< ∣∣q⊺M̂∆ϑ− q⊺M∆θ

∣∣}]
≲ sup

∆ϑ∈Θn

E
[
1
{∣∣q⊺M∆θ

∣∣< ∣∣q⊺M̂∆ϑ− q⊺M∆θ
∣∣}]1/2 = op(1)

where the last inequality follows by Cauchy-Schwartz and Assumption 1, and the last

equality follows from Assumption 2, the fact that ∆ϑ ∈ Θn, and that under the proposi-

tion’s assumptions ∥M̂M−1 − I∥max =Op(n
−1/2); one can then show Eq. (73c) is op(1)

by the same argument as that used to establish Eq. (70) in the proof of Theorem 4.1.

We conclude by establishing Eq. (39). Using the definition of Hausdorff distance,

dH(P̂F ,PF) = max

{
sup
ê∈P̂F

inf
e∈PF

∥ê− e∥ , sup
e∈PF

inf
ê∈P̂F

∥ê− e∥

}

Suppose by contradiction that there is e∗ ∈ PF such that for all n≥ 1, inf
ê∈P̂F ∥ê− e∗∥>

c for some constant c > 0. By definition, there exists q∗ ∈ Q such that SE(q
∗) = e∗. By

Eq. (38), ∥ŜE(q
∗; θ̂)− e∗∥ = op(1), and by definition ŜE(q

∗; θ̂) ∈ P̂F , yielding a contra-

diction. The same argument holds by swapping the role of P̂F and PF . Q.E.D.

PROOF OF PROPOSITION 5.3: Our proof follows arguments in Kaido (2016, Theorem

3.4). We first observe that for e ∈ PF , maxq∈S1(q
⊺e − hE(q)) = 0 and maxq∈Q(q

⊺e −
hE(q)) = 0. Hence, for T ∈ {S1,Q} and ϕe,T(f)≡ supq∈T(q

⊺e− f(q)), we can write

TPF
n (e) = max

{√
n
(
ϕe,S1

(
ĥE(q; θ̂)

)
− ϕe,S1

(
hE(q)

))
,0
}

−min
{√

n
(
ϕe,Q

(
ĥE(q; θ̂)

)
− ϕe,Q

(
hE(q)

)
,0
}
.
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Kaido (2016, Lemma D.3) establishes that ϕe,T is Hadamard directionally differentiable at

hE(·) with Hadamard directional derivative equal to ϕ′e,T(y) = supq∈Q∗
T(e)

−y(q). By The-

orem 4.1, the assumptions in Kaido (2016, Lemma D.4) are satisfied, and the result follows

by the Continuous Mapping Theorem and as argued in Kaido (2016, proof of Theorem

3.4). Absolute continuity of the limit law in Eq. (42) follows using the same argument as

in Beresteanu and Molinari (2008, proof of Theorem 4.3-(ii), p.808). Q.E.D.

PROOF OF PROPOSITION 5.4: Take a point e0 in the set {ẽ : ∥ẽ∥= 2C and ẽr+ ẽb ≤ 0}.

Select ên1 as the metric projection of e0 onto F̂ and let e be the metric projection of e0 onto

F . By the consistency result in Proposition 5.1 and by Molchanov (2017, proof of Theorem

1.7.19), ∥ên1 − e∥ p−→ 0 as n1 →∞. Hence, given that by Theorem 4.1 the support function

estimator converges to the population support function uniformly in q ∈ S1, and given that

q̂∗n1
(ên1) is an extremum estimator and all the conditions for its consistency are satisfied,

∥q̂∗n1
(ên1) − q∗S1(e)∥

p−→ 0 as n1 → ∞. Next, using the same argument as in the proof of

Proposition 5.2 leading to Eqs. (73a)-(73c), and ξS,i(M̌;M̊q;ϑ) defined in Eq. (67),

∥∥∥ŜE(q̂
∗
n1
(ên1); θ̂n1)−SE(q

∗
S1(e))

∥∥∥
=

∥∥∥∥∥ 1

n2

n2∑
i=1

ζS,i(M̂q̂∗n1
(ên1); θ̂n1)−E[ζS,i(Mq∗S1(e);θ)]

∥∥∥∥∥
≤ op(1) +

∥∥∥∥∥ 1

n2

n2∑
i=1

ξS,i(M;Mq∗S1(e);θ)−E
[
ξS,i(M;Mq∗S1(e);θ)

]∥∥∥∥∥ (74a)

+

∥∥∥∥∥
(

1

n2

n2∑
i=1

ξS,i(M;M̂q̂∗n1
(ên1); θ̂n1)−E

[
ξS,i(M;M̂q̂∗n1

(ên1); θ̂n1)
])

−

(
1

n2

n2∑
i=1

ξS,i(M;Mq∗S1(e);θ)−E
[
ξS,i(M;Mq∗S1(e);θ)

])∥∥∥∥∥ (74b)

+
∥∥∥E[ξS,i(M;M̂q̂∗n1

(ên1); θ̂n1)
]
−E

[
ξS,i(M;Mq∗S1(e);θ)

]∥∥∥. (74c)
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By the same argument as in the proof of Proposition 5.2, the terms in Eqs. (74a)-(74b) are

op(1). We next show that the same holds for the term in Eq. (74c). Take any δ > 0,∥∥∥E[ξS,i(M;M̂q̂∗n1
(ên1); θ̂n1)

]
−E

[
ξS,i(M;Mq∗S1(e);θ)

]∥∥∥
≲ sup

∆ϑ∈Θn

max
v∈{−u1,u2}

E
[∣∣v⊺M∆θ

∣∣1{∣∣q∗S1(e)⊺M∆θ
∣∣< ∣∣q̂∗n1

(ên1)
⊺M̂∆ϑ− q∗S1(e)

⊺M∆θ
∣∣}]

≲ sup
∆ϑ∈Θn

E
[
1
{∣∣q∗S1(e)⊺M∆θ

∣∣< ∣∣q̂∗n1
(ên1)

⊺M̂∆ϑ− q∗S1(e)
⊺M∆θ

∣∣}]1/2
≤
(
E
[
1
{∣∣q∗S1(e)⊺M∆θ

∣∣< δ
}]

+E
[
1
{
∥M̂q̂∗n1

(ên1)−Mq∗S1(e)∥> δ
}])1/2

= op(1),

using Assumption 2, ∥M̂M−1 − I∥max = Op(n
−1/2), Markov inequality, and that δ > 0

is arbitrary. Q.E.D.

A.4. Proofs for Section 6

PROOF OF PROPOSITION 6.1: By the same argument as in the proof of Proposition 5.3

and the discussion in Section 5.3,

lim inf
n→∞

P
{
(R,B) ∈ CSn(R,B)

}
≥ 1− α. (75)

To obtain the result in Eq. (52), observe that under the null in Eq. (48), by Eq. (75),

E
[
φskewn

]
= 1− P

{
sup

(R̃,B̃)∈CSn(R,B)

(
(u1 − u2)

⊺R̃
)(
(u1 − u2)

⊺B̃
)
≥ 0

}
≤ 1− P

{
(R,B) ∈ CSn(R,B)

}
≤ α.

Q.E.D.

PROOF OF PROPOSITION 6.2: For g ∈ {r, b}, recall Zg
i defined in Eq. (54) and note that

√
n
(
ê∗g − e∗g

)
=
√
n

(
1

n

n∑
i=1

Zg
i

µ̂g
−

E[Zg
i ]

µg

)

=
1

µg
Gn[Z

g
i ]−

E[Zg
i ]

µ2g
Gn[1{Gi = g}] + op(1) =Gn[Z

g,∗
i ] + op(1),
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where
Zg,∗
i ≡

Zg
i

µg
−

E[Zg
i ]

µ2g
1{Gi = g}. (76)

Since maxd∈{0,1},g∈{r,b}E[(L
g
d)

2] <∞, Zg,∗
i has finite first and second moments. By the

Lindeberg–Lévy central limit theorem, we have
√
n
(
ê∗g − e∗g

)
= G[Zg,∗

i ] + op(1), where

G[Zg,∗
i ] is a mean-zero Gaussian random variable with variance E

[
(Zg,∗

i )2
]
.

By Theorem 4.1 and the Cramér–Wold theorem, we have that jointly,

√
n


ĥE(q; θ̂)− hE(q)

ê∗r − e∗r

ê∗b − e∗b

 d−→


G[ζ∗i (Mq;θ)]

G[Zr,∗
i ]

G[Zb,∗
i ]

≡Ghe∗ in ℓ∞(B1), (77)

Next, we analyze the two parts of the test statistic in Eq. (55), beginning with the first part.

By the same argument as in the proof of Proposition 5.3, under the null that e∗ ∈ F we have

maxq∈S1(q
⊺e∗−hE(q)) = 0. Hence, for ϕS1

(
e, f(·)

)
≡ supq∈S1

(
q⊺e− f(q)

)
, we can write

√
n
[
maxq∈S1(q

⊺ê∗ − ĥE(q; θ̂))
]
+
=max

{√
n
(
ϕS1
(
ê∗, ĥE(q; θ̂)

)
− ϕS1

(
e∗, hE(q)

))
,0
}

.

Kaido (2016, Lemma D.3) shows that ϕS1 is Hadamard directionally differentiable at(
e∗, hE(·)

)
with derivative ϕ′S1,(e∗,hE (·))

(
e, f(·)

)
= supq∈Q∗

S1
(e∗)

(
q⊺e− f(q)

)
.

For the second part of the test statistic in Eq. (55), note that for any s, t ∈R, min{s,2t−
s} = (2t− s)−max{2(t− s),0} and min{t,2s− t} = t−max{2(t− s),0}, so we can

plug in t= e∗r and s= e∗b to rewrite Eq. (30) as

hC∗(q) = max

{
q1(e

∗
r −max{2(e∗r − e∗b),0}) + q2e

∗
b , q1e

∗
r + q2

(
2e∗r − e∗b −max{2(e∗r − e∗b),0}

)}
=max

{
2q2
(
e∗r − e∗b

)
+ (q1 − q2)max{2(e∗r − e∗b),0}, 0

}
+ q1e

∗
r + q2e

∗
b − q1max{2(e∗r − e∗b),0}.

It follows that we can write

h1
(
hE(·), e∗r, e∗b ; q

)
≡− hC∗(q)− hE(−q)

=−
(
max

{
2q2
(
e∗r − e∗b

)
+ (q1 − q2)max{2(e∗r − e∗b),0}, 0

}
+ q1e

∗
r + q2e

∗
b − q1max{2(e∗r − e∗b),0}

)
− hE(−q). (78)
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Hence, the second part of the test statistic in Eq. (55) is the composition of two map-

pings applied to {ĥE(·; θ̂), ê∗r, ê∗b}: h1( · ; q) in Eq. (78) and h2(·) ≡ maxq(·). Each of

these mappings is Hadamard directionally differentiable at {hE(·), e∗r, e∗b} tangentially to

ℓ∞(S̃1)× R2 (Fang and Santos, 2019, Example 2.1; Cárcamo et al., 2020, Theorem 2.1).

By Shapiro (1990, Proposition 3.6),

max
q∈S̃1

(−hC∗(q)− hE(−q)) = h2 ◦ h1
(
hE(·), e∗r, e∗b ; q

)
≡ h
(
hE
(
·), e∗r, e∗b

)
≡ h (79)

is directionally differentiable at (hE(·), e∗r, e∗b) tangentially to ℓ∞(S̃1)×R2, with

h′(·) = h′2,h∗1(q)
◦ h′1,s∗( · ; q), (80)

where h∗1(q)≡ h1
(
hE(·), e∗r, e∗b ; q

)
and s∗ ≡ (q1 − q2)max{2(e∗r − e∗b),0}+ 2q2

(
e∗r − e∗b

)
;

for any sr, sb, s ∈R, sh ∈ ℓ∞(S̃1) (the space of bounded functions over the compact set S̃1)

and continuous f ∈ ℓ∞(S̃1),

h′1,s∗
(
sh(·), sr, sb ; q

)
=−ϕ′1,s∗(2q2[sr − sb] + 2(q1 − q2)ϕ

′
1,e∗r−e∗b

[sr − sb])

− q1sr − q2sb + 2q1ϕ
′
1,e∗r−e∗b

[sr − sb]− sh(−q), (81)

h′2,h∗1(q)
(f) = max{

q∈S̃1:h∗1(q)=h
}f(q). (82)

In Eq. (81), for any t ∈R

ϕ′1,s∗(t)≡


t, if s∗ > 0

max{t,0}, if s∗ = 0

0, if s∗ < 0

(83)

is the Hadamard directional derivative of ϕ1(s)≡max{s,0} at s∗ (Fang and Santos, 2019,

Example 2.1). Eq. (82) results from Cárcamo et al. (2020, Corollary 2.3), as h1(· ; q) is

a continuous function over compact support. By Shapiro (1990, Proposition 3.6), T LDAn is

Hadamard directionally differentiable at (hE(·), e∗r, e∗b) tangentially to ℓ∞(S̃1)× R2, with

directional derivative given by the sum of the two directional derivatives derived above.

By Kaido (2016, Theorem 3.4), Fang and Santos (2019, Theorem 2.1), and Cárcamo et al.

(2020, Theorem 2.2), for G[Z∗
i ]≡

[
G[Zr,∗

i ] G[Zb,∗
i ]
]⊺

, ψLDA takes the form
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ψLDA =

 sup
q∈Q∗

S1
(e∗)

q⊺G[Z∗
i ]−G[ζ∗i (Mq;θ)]


+

+
[
h′2,h∗1(q)

{
h′1,s∗

(
G[ζ∗i (−M( · );θ)],G[Zr,∗

i ],G[Zb,∗
i ] ; q

)}]
−
. (84)

If cLDA1−α+ς + ς is a continuity point of the distribution of ψLDA,

lim
n→∞

P
(
T LDAn > cLDA1−α+ς + ς

)
= P
(
ψLDA > cLDA1−α+ς + ς

)
≤ α.

For ς small enough, if cLDA1−α+ς + ς is a discontinuity point of ψLDA, then ψLDA is continuous

at cLDA1−α, and since P(T LDAn > cLDA1−α+ς + ς)≤ P(T LDAn > cLDA1−α), the result follows.

If Eq. (14) is satisfied, E has no kinks or flat faces (by Assumption 2). Under the

null, since e∗ ∈ F ,
{
q ∈ S̃1 : h∗1(q) = h

}
= argmaxq∈S̃1 (−hC∗(q)− hE(−q)) = {q∗S̃1} and

−(q∗S̃1)
⊺e∗ − hE(−q∗S̃1) = 0, so that e∗ = SE(−q∗S̃1). It then follows that under Eq. (14),

ψLDA =
[
q∗⊺S1G[Z∗

i ]−G[ζ∗i (Mq∗S1 ;θ)]
]
+

+
[
h′1,s∗

(
G[ζ∗i (−M(·);θ)],G[Zr,∗

i ],G[Zb,∗
i ] ; q∗S1

)]
−
. (85)

Q.E.D.

PROOF OF PROPOSITION 6.3: We verify the assumptions in Theorem 3.2 of Fang and

Santos (2019), from which it follows that Proposition 6.3 holds and that ĉβ = cβ + op(1)

(Fang and Santos, 2019, Online Appendix, Eq. (S.13), p. 4) when cβ is a point at which the

cdf of ϕ′he∗(Ghe∗) is continuous and increasing.

Assumptions 1, 3(i), 3(iii), and 3(iv) of Fang and Santos (2019) hold by construction;

their Assumption 2 holds by Eq. (77), and Assumption 4 holds by Lemma S.3.8 of Fang

and Santos (2019, Online Appendix). Lastly, to show Assumption 3(ii) holds, let On ≡
{(Yi,Gi,Xi)}ni=1. In the next paragraph, we establish that

sup
f∈BL1

∣∣∣∣E[f (√n{h̃e∗(θ̂)− ĥe∗(θ̂)}
) ∣∣∣∣On

]
−E[f(Ghe∗)]

∣∣∣∣
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= sup
f∈BL1

∣∣∣∣∣∣∣∣E
f


Gn[(Wi − 1)ζ∗i (Mq;θ)]

Gn[(Wi − 1)Zr,∗
i ]

Gn[(Wi − 1)Zb,∗
i ]


 ∣∣∣∣On

−E[f(Ghe∗)]

∣∣∣∣∣∣∣∣+ op(1), (86)

where Ghe∗ is defined in Eq. (77), and by Theorem 3.6.13 of van der Vaart and Wellner

(1996), Eq. (86) = op(1), and therefore Assumption 3(ii) of Fang and Santos (2019) holds.

To show that the equality in Eq. (86) holds, we let µ̃Wg ≡Wµ̃g , M̃W ≡ diag(1/µ̃Wr ,1/µ̃
W
b ).

Recall ξS,i(M̌;M̊q; θ̂) defined in Eq. (67). Decompose the bootstrapped process by

√
n
{
h̃e∗(θ̂)− ĥe∗(θ̂)

}
=
√
n
{
h̃e∗(θ̂)− he∗

}
−
√
n
{
ĥe∗(θ̂)− he∗

}

=
√
n


1
n

∑n
i=1Wiq

⊺ξS,i(M̃W ;M̃q; θ̂)−E[ζi(Mq;θ)]

1
n

∑n
i=1Wi

Zr
i

µ̃W
r

− E[Zr
i ]

µr

1
n

∑n
i=1Wi

Zb
i

µ̃W
b

− E[Zb
i ]

µb

−


Gn[ζ

∗
i (Mq;θ)]

Gn[Z
r,∗
i ]

Gn[Z
b,∗
i ]

+ op(1),

where the second equality follows from Theorem 4.1 and the proof of Proposition 6.2.

Next, observe that

√
n

(
1

n

n∑
i=1

Wiq
⊺ξS,i(M̃W ;M̃q; θ̂)−E[ζi(Mq;θ)]

)

=
√
n

(
1

n

n∑
i=1

q⊺(M̃WM−1)
(
WiξS,i(M;M̃q; θ̂)−E[WiξS,i(M;Mq;θ)]

))
︸ ︷︷ ︸

≡Ã

+
√
nq⊺

(
M̃WM−1 − I

)
E[ξS,i(M;Mq;θ)]︸ ︷︷ ︸

≡B̃

=Gn[Wiζ
∗
i (Mq;θ)] + op(1),

where E[WiξS,i(M;Mq;θ)] = E[ξS,i(M;Mq;θ)] by independence of Wi and E[Wi] =

1, Ã (resp., B̃) is the bootstrapped analogue of A (resp., B) in the proof of Theorem 4.1,

and the last equality follows from a similar argument used in the proof of Theorem 4.1.
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In addition, for g ∈ {r, b}, by the Delta method,

√
n

(
1

n

n∑
i=1

Wi
Zg
i

µ̃Wg
−

E[Zg
i ]

µg

)

=
√
n

(
1

n

n∑
i=1

Wi
Zg
i

µg
−

E[Zg
i ]

µg

)
+
√
n

(
1

µ̃Wg
− 1

µg

)(
1

n

n∑
i=1

WiZ
g
i

)

=Gn[WiZi]
1

µg
−Gn[Wi1{Gi = g}]

E[Zg
i ]

µ2g
+ op(1) =Gn[WiZ

g,∗
i ] + op(1).

Therefore,

√
n
{
h̃e∗(θ̂)− ĥe∗(θ̂)

}
=


Gn[(Wi − 1)ζ∗i (Mq;θ)]

Gn[(Wi − 1)Zr,∗
i ]

Gn[(Wi − 1)Zb,∗
i ]

+ op(1),

yielding Eq. (86).

Q.E.D.

A.5. Proofs for Section 7

PROOF OF PROPOSITION 7.1: Consider the null hypothesis H0 : ρ(e
∗, F ) = δ against

HA : ρ(e∗, F ) ̸= δ for some δ > 0, and view our confidence interval as the result of inverting

this hypothesis test. Let φdistn ≡ 1
{
inf

ρ(ẽ,F̃ )∈CSρ(e∗,F )
n

∣∣∣ρ(ẽ, F̃ )− δ
∣∣∣> 0

}
and partition the

parameter space of the location of E relative to H45 such that

φdistn = φdistn 1
{
E ∩H−

45 = ∅
}

(87)

+ φdistn 1
{
E ∩H+

45 = ∅
}

(88)

+ φdistn 1
{
E ∩H+

45 ̸= ∅,E ∩H−
45 ̸= ∅

}
. (89)

Note that whenever CS+
n (e

∗, F ) ̸= ∅,

inf
ρ(ẽ,F̃ )∈CSρ(e∗,F )

n

|ρ(ẽ, F̃ )− δ| ≤ inf
(ẽ,F̃ )∈CS+

n (e∗,F )
|ρ(ẽ, F̃ )− δ|,
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⇒ E[φdistn ]≤ E

[
1

{
inf

(ẽ,F̃ )∈CS+
n (e∗,F )

|ρ(ẽ, F̃ )− δ|> 0

}]
, (90)

and similarly when (ẽ, F̃ ) ∈ CS+
n (e

∗, F ) is replaced with (ẽ, F̃ ) ∈ CS−
n (e

∗, F ) or ρ(ẽ, F̃ ) ∈
CS45

n (ρ(e∗, F )) (and under the case where these sets are non-empty).

When E ∩ H−
45 = ∅, we have F ∈ H+

45 ∪H45 and limn→∞P
(
(e∗, F ) ∈ CS+

n (e
∗, F )

)
≥

1 − α by a similar argument to the proof of Proposition 6.1. It then follows that under

the null ρ(e∗, F ) = δ, E[(87)]≤ α1{E ∩H−
45 = ∅} as n→∞, using Eq. (90) and the fact

that P
(
inf(ẽ,F̃ )∈CS+

n (e∗,F )

∣∣∣ρ(ẽ, F̃ )− δ
∣∣∣> 0

)
≤ 1 − P

(
(e∗, F ) ∈ CS+

n (e
∗, F )

)
. Similarly,

E[(88)]≤ α1{E ∩H+
45 = ∅} as n→∞.

We complete the proof by showing E[(89)] ≤ α1{E ∩ H+
45 ̸= ∅,E ∩ H−

45 ̸= ∅} if

ρ(e∗, F ) = δ. In the event E ∩ H+
45 ̸= ∅ and E ∩ H−

45 ̸= ∅, F ∈ H45 and—since E is not

tangent to H45 in this case—the direction in which F is the support set of E does not live in

the span {c[1 − 1]⊺ : c ∈R}. Hence, c∗ ≡ arg infc∈R hE(u1(c)) for u1(c)≡ u1 − c[1 − 1]⊺

is bounded, since otherwise it would require E to be tangent to H45. In addition, as ex-

plained in Footnote 3, hE(u1(c)) is bounded from below when F ∈H45. We can therefore

restrict attention to c ∈ [−c3, c3]≡ C3 ⊂ R for some bounded constant c3 > 0 in the char-

acterization of F in Eq. (19) so that hE(u1(·)) is a bounded function over compact support

C3. Under the maintained assumptions, Eq. (77) holds and implies that

√
n


ĥE
(
u1(c); θ̂

)
− hE

(
u1(c)

)
ê∗r − e∗r

ê∗b − e∗b

 d−→


∥u1(c)∥EG[ζ∗i (Mu1(c)/∥u1(c)∥E ;θ)]

G[Zr,∗
i ]

G[Zb,∗
i ]

 in ℓ∞(C3),

where we use the property of support functions that for any constant c̃ > 0, hE(c̃ · q) =
c̃ · hE(q) (see, Schneider, 1993, p.45). Recall F45 ≡ u · hẼ(u1) and let F̂45 be its estimator

with hE(·) replaced by ĥE( · ; θ̂) in the expression of hẼ(·) given in Eq. (19). Observe that

ρ(e∗, F45) is a composition of two Hadamard directionally differentiable functions: let h4 :

ℓ∞(C3)→R be the infc∈C3(·) function,

ρ(e∗, F45) = ρ

(
e∗, u · h4

{
hE
(
u1(c)

)})
,
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where by Cárcamo et al. (2020, Corollary 2.3), h4 is directionally differentiable at

hE
(
u1(·)

)
tangentially to ℓ∞(C3), with

h′4,hE (u1(·))(f) = inf{
c∈C3:hE

(
u1(c)

)
=hẼ (u1)

}f(c), for continuous f ∈ ℓ∞(C3).

Denote ρ′(e∗,F45)
:R2×R2 →R the directional derivative of ρ at (e∗, F45). Then by Shapiro

(1990, Proposition 3.6), Fang and Santos (2019, Theorem 2.1), and Cárcamo et al. (2020,

Theorem 2.2),

√
n
[
ρ(ê∗, F̂45)− ρ(e∗, F45)

]
d−→ ψρ(e∗,F45),

where, for G[Z∗
i ]≡

[
G[Zr,∗

i ] G[Zb,∗
i ]
]⊺

,

ψρ(e∗,F45) ≡ ρ′(e∗,F45)

(
G[Z∗

i ],u · h′4,hE (u1(·))
(
∥u1(c)∥EG[ζ∗i (Mu1(c)/∥u1(c)∥E ;θ)]

))
,

so by the continuous mapping theorem,

ψ45 =
∣∣∣ψρ(e∗,F45)

∣∣∣ , (91)

Next, if Eq. (14) holds and E has no kinks, we show that the set
{
c ∈ C3 : hE

(
u1(c)

)
= hẼ(u1)

}
is a singleton and the expression of ψρ(e∗,F45) simplifies. Recall c∗ ≡ arg infc∈C3 hE

(
u1(c)

)
.

By contradiction, assume there exists c̃ ̸= c∗ and hE
(
u1(c̃)

)
= hE

(
u1(c

∗)
)
= hẼ(u1). This

implies that the two linear equations (−1− c̃)er + c̃eb = hẼ(u1) and (−1− c∗)er + c∗eb =

hẼ(u1) intersect at some point (e⋆r, e
⋆
b). Replacing this value in the equations, we find

c̃(e⋆b − e⋆r) = c∗(e⋆b − e⋆r). If c∗ = 0, for c̃ not to equal c∗ it must be the case that c̃ ̸= 0, in

which case e⋆b = e⋆r , implying that (e⋆r, e
⋆
b) = R = F and in turn by Eq. (14) it must be the

case that c̃ = c∗. Similarly, if c∗ ̸= 0, then either e⋆b = e⋆r , which implies (e⋆r, e
⋆
b) = F and

hence c̃= c∗, or c̃/c∗ = 1 and the claim follows. Let ũ1(c∗)≡ u1(c
∗)

∥u1(c∗)∥E
, we get:

ψ45 =

∣∣∣∣ρ′(e∗,F45)

(
G[Z∗

i ],u · ∥u1(c∗)∥E ·G [ζ∗i (Mũ1(c
∗);θ])

)∣∣∣∣ . (92)
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If F ∈ H45, limn→∞P
(
CS45

n (ρ(e∗, F )) = ∅
)
= 0. Under the null ρ(e∗, F ) = δ, and using

again Eq. (90), if cρ(ẽ,F̃ )
1−α+ς + ς is a continuity point of the distribution of ψρ(ẽ,F̃ ),

lim
n→∞

E[φdistn ]≤ lim
n→∞

P
(
T
ρ(ẽ,F̃ )
n > c

ρ(ẽ,F̃ )
1−α+ς + ς

)
≤ α

and if it is a discontinuity point for an infinitesimal ς , then cρ(ẽ,F̃ )
1−α is a continuity point and

lim
n→∞

E[φdistn ]≤ lim
n→∞

P
(
T
ρ(ẽ,F̃ )
n > c

ρ(ẽ,F̃ )
1−α

)
= α.

Therefore, under the null ρ(e∗, F ) = δ, we conclude

lim
n→∞

E[φdistn ]≤ α.

Test inversion yields the coverage result. Q.E.D.

APPENDIX B: AUXILIARY RESULTS

B.1. Threshold Rules

In the paper, we allow A(X ), the set of all algorithms that map from the input space

X to [0,1], to be completely unrestricted. This includes randomized rules where the event

D = 1 occurs with probability a(X). Here instead we consider threshold rules. Let Ath(X )

denote a space of algorithms {a :X 7→R} such that a ∈Ath(X ) induces the decision rule

Da = 1{a(X)≥ 0}.

One could alternatively pick a constant κ a priori and use a decision rule of the form

1{a(X)≥ κ}, but to ease notation we absorb the threshold κ in a. We maintain the follow-

ing richness assumption on Ath(X ):

ASSUMPTION B.1: The set of algorithms Ath(X ) is (i) convex; and (ii) sufficiently rich,

in the sense that, X-a.s.,

∃a′ ∈Ath(X ) : 1{a′(X)≥ 0}= 1,

∃a′′ ∈Ath(X ) : 1{a′′(X)≥ 0}= 0.
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REMARK B.1—Linear Threshold Rules: Assumption B.1 is satisfied by linear threshold

rules with Ath(X ) = {[1;X]⊺β : β ∈RdX+1} and Dβ = 1{[1;X]⊺β ≥ 0}.

When using threshold rules, similar to Eq. (5), the group risks can be expressed as

eg(Da)≡
1

µg
EX

[
Daθ

g
1(X) + (1−Da)θ

g
0(X)

]
=

1

µg
E
[
Lg
0 + (Lg

1 −Lg
0)1{a(X)≥ 0}

]
. (93)

Compare Eq. (93) with Eq. (5): it follows immediately that threshold rules given by

Dk(θ(X),Mq) = 1{k(θ(X),Mq) ≥ 0} yield the extreme points of the set E in Eq. (8).

As we show next, under Assumption B.1, the feasible set associated with threshold rules,

denoted Eth, is convex. To see this, note that

Eth = {E[Mϑ(X)] : ϑ(X) ∈ {θ0(X),θ1(X)}} ≡E
[
MΛ̃(X)

]
, (94)

with θd(X) defined in Eq. (6) and Λ̃(X)≡ {θ0(X),θ1(X)}. Relative to Eq. (8), the fun-

damental difference here is that {θ0(X),θ1(X)} is a two-point set instead of an interval.

Nonetheless, the set on the right-hand-side of Eq. (94) is by definition (Molchanov and

Molinari, 2018, Def. 3.1) the Aumann expectation of the two-point set Λ̃(X). Next, ob-

serve that under Assumption 2 the probability space on which (Y,G,X) are defined is

non-atomic (non-atomicity follows as long as one of the variables in X has a continu-

ous distribution, and if all variables in X had a discrete distribution, Assumption 2 would

fail).14 As both θ0(X) and θ1(X) are absolutely integrable, all conditions required for

Theorem 3.4 in Molchanov and Molinari (2018) are satisfied, yielding:

E
[
MΛ̃(X)

]
=E

[
M conv ({θ0(X),θ1(X)})

]
=E [MΛ(X)] . (95)

14To see this, let X have countable support, take x ∈ X such that P(X = x) = ς > 0. Then for q =
[{θb1(x)−θb0(x)}/µb {θr0(x)−θr1(x)}/µr]

⊺

∥M{θ1(x)−θ0(x)}∥ , P(|q1{θr1(x) − θr0(x)}/µr + q2{θb1(x) − θb0(x)}/µb| = 0) ≥ ς > 0,

and hence P(|q1{θr1(x)− θr0(x)}/µr + q2{θb1(x)− θb0(x)}/µb|< δ)≥ ς > 0 for any δ > 0.
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Theorem 3.11 in Molchanov and Molinari (2018) also applies, and hE(q) = hE[MΛ(X)](q) =

hE[MΛ̃(X)](q) = E[hMΛ(X)(q)]. Hence, under Assumption B.1, the feasible set associated

with threshold rules is convex and the support function fully characterizes it.

REMARK B.2—Richness of Threshold Rules: The result in Eq. (95) shows that thresh-

old rules corresponding to a rich algorithm space can replicate any unconstrained algorithm.

Inspecting further the linear case is instructive. If one allows for any β ∈RdX+1, Assump-

tion B.1 is satisfied. By the same argument given above, the feasible set associated with

linear threshold rules, denoted Elin, is convex. Indeed, for each β one can write

eg(β)≡
1

µg
E
[
Lg
0

∣∣[1;X]⊺β < 0
]
P ([1;X]⊺β < 0)+

1

µg
E
[
Lg
1

∣∣[1;X]⊺β ≥ 0
]
P ([1;X]⊺β ≥ 0) .

Let X+
β ≡ {X ∈ X : [1;X]⊺β ≥ 0} and X−

β ≡ {X ∈ X : [1;X]⊺β < 0} denote the two sets

in which a linear threshold rule with parameter β partitions X . As at least one component

of X has continuous distribution and β has support RdX+1, each realization of X can be

allocated either in X+
β or in X−

β for some β. Hence, convexification occurs. The support

function of Elin can be expressed as

hElin(q) = max
β∈RdX+1

q⊺eg(β) = max
β∈RdX+1

(Mq)⊺E [L01([1;X]⊺β < 0) +L11([1;X]⊺β ≥ 0)] .

B.2. Sufficient Conditions Yielding Strict Convexity and No Kinks

Assumption 2 plays multiple roles in our analysis. It assures that E is strictly convex,

hence its support set in any direction q ∈ S1 is a singleton, and it assures Neyman orthog-

onality of the moment condition defining hE(·). Semenova (2023, Section 3.1) provides

sufficient conditions for this assumption, based on joint Gaussianity of θ1(X)− θ0(X). A

mild strengthening of Assumption 3 is sufficient both for Assumption 2 to hold with m= 1

and for Eq. (14) to be satisfied, guaranteeing the absence of kinks in E , as we show next.

ASSUMPTION B.2: (i) The distribution of (X1,X2)|X[3:dX ] is continuous with a

bounded density and E
[∣∣ηg(X[3:dX ])

∣∣] <∞ for g ∈ {r, b}; (ii) for a set X̃[3:dX ] of real-

izations of X[3:dX ] with positive probability, the density of (X1,X2)|X[3:dX ] is positive on

a ball of radius c > 0 that includes 0 and the image of X̃[3:dX ] under ηg(·) includes 0.
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PROPOSITION B.1: If Assumptions 3 and B.2(i) hold, Assumption 2 is implied. If As-

sumption B.2(ii) also holds, Eq. (14) holds and the set E has no kinks.

PROOF: Take δ > 0, and note that supq∈S1 P(|k(θ(X),Mq)|< δ) can be written as

sup
q∈S1

EX[3:dX ]

[∫ δ

0

∣∣∣q1∆θr(X)/µr + q2∆θ
b(X)/µb

∣∣∣dP(X1,X2)|X[3:dX ]

]

≲ max
g∈{r,b}

EX[3:dX ]

[∫ δ

0

(
|αg|+ |βg|+ |ηg(X[3:dX ])|

)
dP(X1,X2)|X[3:dX ]

]

≲ max
g∈{r,b}

EX[3:dX ]

[
δ
(
|αg|+ |βg|+ |ηg(X[3:dX ])|

)]
≲ δ,

where the first inequality follows from supq∈S1 ∥q∥E = 1, µg ∈ (0,1), and that (X1,X2)

has bounded support. The second equality follows from continuity and boundedness of

dP(X1,X2)|X[3:dX ]
. The last inequality follows from E

[∣∣ηg(X[3:dX ])
∣∣]<∞.

For the second result, observe that θ1(X)− θ0(X) = ∆θ(X) equals: αr βr

αb βb


︸ ︷︷ ︸

≡A1

X1

X2

+

ηr(X[3:dX ])

ηb(X[3:dX ])


︸ ︷︷ ︸

≡A2

,

where the matrix A1 is invertible by αbβr ̸= αrβb. Under Assumption B.2(ii), on the set

X̃[3:dX ], A1[X1 X2]
⊺+A2 realizes in a set containing 0. Hence, Eq. (14) holds by applying

the law of iterated expectations. Q.E.D.

APPENDIX C: VARIABILITY OF THE EMPIRICAL RESULTS TO NUISANCE

PARAMETER ESTIMATION

C.1. Estimating the Nuisance Parameters Using Lasso

In this subsection, we report the analogs of Figures 6-7-8 and Tables II-III using multina-

tional logit lasso from the glmnet package to estimate the nuisance parameter ∆θ. That

is, the only difference between the results reported in this subsection and those in Section

8.2 lies in the choice of what machine learner is used to estimate nuisance parameters.

Respectively, these are Figures C.1-C.2-C.3 and Tables C.I-C.II.

https://glmnet.stanford.edu/index.html
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FIGURE C.1.—Top-left panel: Ê ; top-right panel: Ê along with one hundred supporting hyperplanes; bot-

tom-left panel: zoom-in to F̂ and the 95% confidence set around this frontier; bottom-right panel: further zoom-in

to the best group-specific points BL and WH, and the fairest point F . ∆θ is estimated by logit lasso.

(a) Candidate values for (BL,WH) (b) 3 experimental algorithms

FIGURE C.2.—Panel (a): Plum-colored (respectively, light-blue colored) circles correspond to candidate values

for eBL (eWH) sampled from a normal distribution centered at êBL (êWH), and red (blue) diamonds correspond

to non-rejected values. Panel (b): F̂ along with its 95% confidence set and the estimated group risks for four

algorithms considered by OPVM: the original algorithm used by the hospital (asterisk); one that predicts total

cost (hollow diamond with a cross); one that predicts avoidable costs (filled diamond); and one that predicts the

number of active chronic conditions (hollow diamond). ∆θ is estimated by logit lasso.
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FIGURE C.3.—Average number of active chronic conditions within each risk-score percentile bin by treatment

group under the alternative algorithms on the FA frontier subject to 3% capacity constraint, averaged across 20

replications of the 50-50 split. ∆θ is estimated by logit lasso.
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C.2. Variability of Empirical Results due to the Randomness in the Nuisance Estimation

Both random forests and lasso involve randomness in their respective construction: for

forests implemented by the grf package, randomness comes from subsampling in the

construction of individual trees and randomly splitting features at each tree node, whereas

for lasso implemented by the glmnet package, randomness comes from choosing the

optimal penalty parameter via cross-validation. Therefore, even if the same seed is set for

reproducibility whenever possible, results will vary across different seeds. For this reason,

we provide an assessment of how the empirical results reported in Section 8.2 vary across

different seeds by repeating the empirical exercises 20 times, with results for forests and

lasso reported respectively in Table C.III and Table C.IV.

https://grf-labs.github.io/grf/index.html
https://glmnet.stanford.edu/index.html


77
TABLE C.I

RESULTS FOR THE LDA TEST AND CONFIDENCE SETS FOR THE DISTANCE TO F (FOR α= 0.05)

Test H0 : There Is No LDA
Original Total Costs Avoid. Costs Act. Chr. Cond.

Estimated Risks (0.065,0.034) (0.059,0.033) (0.054,0.023) (0.037,0.015)

Test Statistic 2.043 0.787 0.440 2.774

Critical Value 2.014 1.865 1.937 1.886

Conclusion Rejected Not Rejected Not Rejected Rejected

Distance to F = (0.063,0.063)

Estimated Distance 0.0009 0.0009 0.0017 0.0029

Confidence Set (0.000,0.002) (0.000,0.002) (0.000,0.003) (0.001,0.006)

Top panel: LDA test statistics and 0.05-level critical values associated with the original algorithm and the

three experimental algorithms (predicting, respectively, total costs; avoidable costs; number of active chronic

conditions) analyzed by OPVM. Bottom panel: estimated squared-Euclidean distance to the F point and cor-

responding confidence set for this distance. ∆θ is estimated by logit lasso

TABLE C.II
FRACTION OF BLACK PATIENTS TREATED AMONG ALL TREATED

Algorithms from Obermeyer et al. Algorithms on the FA-Frontier
Capacity Threshold Original Counterfactual Rawlsian Majority Egalitarian Utilitarian

55 0.120 0.184 0.173 0.173 0.174 0.172

69 0.128 0.255 0.217 0.200 0.171 0.202

82 0.138 0.327 0.241 0.224 0.130 0.223

89 0.151 0.407 0.264 0.247 0.118 0.249

94 0.167 0.498 0.324 0.284 0.124 0.294

97 0.184 0.592 0.369 0.318 0.143 0.339

The distribution of the number of active chronic conditions is such that the 55th to the 68th percentiles all

correspond to 1 active chronic condition, the 69th-81st correspond to 2, the 82nd-88th correspond to 3, the

89th-92nd correspond to 4, the 94th-95th correspond to 5, and the 96th-97th correspond to 6. ∆θ is estimated

by logit lasso.
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TABLE C.III

VARIABILITY OF EMPIRICAL RESULTS: RANDOM FORESTS

Mean SD Min 25-th 50-th 75-th Max

Weak Skew Test

Conclusion 0 0 0 0 0 0 0

LDA Test

Original Algorithm:

Test Statistic 3.338 0.318 2.666 3.173 3.301 3.562 3.823

Critical Value 1.894 0.051 1.810 1.866 1.896 1.919 2.004

Conclusion 1 0 1 1 1 1 1

Algorithm that Predicts Total Costs:

Test Statistic 2.149 0.327 1.475 1.977 2.111 2.361 2.761

Critical Value 1.844 0.066 1.736 1.804 1.829 1.876 1.998

Conclusion 0.8 0.410 0 1 1 1 1

Algorithm that Predicts Avoidable Costs:

Test Statistic 1.488 0.054 1.398 1.440 1.493 1.521 1.577

Critical Value 1.721 0.060 1.612 1.682 1.724 1.754 1.836

Conclusion 0 0 0 0 0 0 0

Algorithm that Predicts the Number of Active Chronic Conditions:

Test Statistic 1.194 0.346 0.674 1.007 1.135 1.395 1.812

Critical Value 1.632 0.049 1.516 1.600 1.634 1.654 1.725

Conclusion 0.15 0.366 0 0 0 0 1

Confidence Set for the Distance to F

Estimated F 0.052 0.003 0.049 0.050 0.052 0.054 0.058

Original Algorithm:

Estimated Distance 0.0005 0.0000 0.0005 0.0005 0.0005 0.0005 0.0006

Lower 95% CI 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 0.0002

Upper 95% CI 0.0012 0.0003 0.0008 0.0009 0.0011 0.0014 0.0018

Algorithm that Predicts Total Costs:

Estimated Distance 0.0004 0.0001 0.0003 0.0004 0.0004 0.0004 0.0006

Lower 95% CI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Upper 95% CI 0.0013 0.0004 0.0007 0.0010 0.0013 0.0016 0.0022

Algorithm that Predicts Avoidable Costs:

Estimated Distance 0.0009 0.0002 0.0007 0.0007 0.0008 0.0009 0.0013

Lower 95% CI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

Upper 95% CI 0.0024 0.0005 0.0018 0.0020 0.0023 0.0027 0.0033

Algorithm that Predicts the Number of Active Chronic Conditions:

Estimated Distance 0.0016 0.0003 0.0012 0.0013 0.0016 0.0017 0.0023

Lower 95% CI 0.0003 0.0002 0.0000 0.0002 0.0003 0.0004 0.0006

Upper 95% CI 0.0041 0.0006 0.0030 0.0035 0.0042 0.0046 0.0051

Table C.III reports the variability of the empirical results in Section 8.2 due to randomness in the estimation

of ∆θ using random forests, reported as the mean, standard deviation, minimum, the 25-th percentile, 50-th

percentile, 75-th percentile, and the maximum across 20 replications. Test conclusions are recorded as 1 if the

conclusion is rejection, and 0 otherwise.
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TABLE C.IV

VARIABILITY OF EMPIRICAL RESULTS: LOGIT LASSO

Mean SD Min 25-th 50-th 75-th Max

Weak Skew Test

Conclusion 0 0 0 0 0 0 0

LDA Test

Original Algorithm:

Test Statistic 2.037 0.182 1.784 1.874 2.001 2.166 2.390

Critical Value 1.976 0.074 1.762 1.937 1.989 2.024 2.066

Conclusion 0.550 0.510 0 0 1 1 1

Algorithm that Predicts Total Costs:

Test Statistic 0.804 0.173 0.562 0.651 0.788 0.908 1.154

Critical Value 1.915 0.055 1.801 1.890 1.914 1.961 1.995

Conclusion 0 0 0 0 0 0 0

Algorithm that Predicts Avoidable Costs:

Test Statistic 0.478 0.171 0.100 0.375 0.491 0.591 0.821

Critical Value 1.913 0.057 1.783 1.888 1.923 1.941 2.006

Conclusion 0 0 0 0 0 0 0

Algorithm that Predicts the Number of Active Chronic Conditions:

Test Statistic 2.769 0.174 2.470 2.668 2.754 2.889 3.184

Critical Value 1.873 0.058 1.768 1.841 1.880 1.905 2.020

Conclusion 1 0 1 1 1 1 1

Confidence Set for the Distance to F

Estimated F 0.063 0.001 0.061 0.062 0.062 0.063 0.065

Original Algorithm:

Estimated Distance 0.0008 0.0001 0.0007 0.0008 0.0008 0.0009 0.0010

Lower 95% CI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Upper 95% CI 0.0020 0.0003 0.0014 0.0017 0.0019 0.0021 0.0026

Algorithm that Predicts Total Costs:

Estimated Distance 0.0009 0.0001 0.0008 0.0008 0.0009 0.0009 0.0010

Lower 95% CI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Upper 95% CI 0.0022 0.0003 0.0017 0.0021 0.0022 0.0025 0.0025

Algorithm that Predicts Avoidable Costs:

Estimated Distance 0.0016 0.0001 0.0014 0.0015 0.0016 0.0017 0.0018

Lower 95% CI 0.0003 0.0001 0.0000 0.0002 0.0003 0.0004 0.0005

Upper 95% CI 0.0035 0.0004 0.0030 0.0032 0.0035 0.0038 0.0042

Algorithm that Predicts the Number of Active Chronic Conditions:

Estimated Distance 0.0028 0.0002 0.0026 0.0027 0.0028 0.0029 0.0032

Lower 95% CI 0.0009 0.0003 0.0005 0.0008 0.0009 0.0011 0.0016

Upper 95% CI 0.0054 0.0004 0.0047 0.0051 0.0054 0.0057 0.0062

Table C.IV reports the variability of the empirical results in Section 8.2 due to randomness in the estimation of

∆θ using logit lasso, reported as the mean, standard deviation, minimum, the 25-th percentile, 50-th percentile,

75-th percentile, and the maximum across 20 replications. Test conclusions are recorded as 1 if the conclusion

is rejection, and 0 otherwise.
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