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ABSTRACT. Structural estimation in economics often makes use of models formulated in

terms of moment conditions. While these moment conditions are generally well-motivated,

it is often unknown whether the moment restrictions hold exactly. We consider a framework

where researchers model their belief about the potential degree of misspecification via a prior

distribution and adopt a quasi-Bayesian approach for performing inference on structural

parameters. We provide quasi-posterior concentration results, verify that quasi-posteriors can

be used to obtain approximately optimal Bayesian decision rules under the maintained prior

structure over misspecification, and provide a form of frequentist coverage results. We illustrate

the approach through empirical examples where we obtain informative inference for structural

objects allowing for substantial relaxations of the requirement that moment conditions hold

exactly. Keywords: sensitivity analysis, misspecification, generalized method of moment (GMM),

quasi-Bayes, Bernstein–von Mises theorem (BvM)

1. INTRODUCTION

Moment restrictions are commonly used in the identification and estimation of structural or
causal parameters in empirical economics. Prominent examples include instrument exclusion
conditions, unconfoundedness assumptions, parallel trend assumptions, and nonlinear moment
restrictions imposed in structural models. Economists typically use institutional knowledge and
economic reasoning to argue for the validity of these restrictions in settings with observational
data. Based on these arguments, classical estimation and inference, such as estimation and infer-
ence based on the generalized method of moments (GMM), then proceed under the maintained
assumption that the posited moment restrictions hold exactly.

While the arguments employed to justify moment restrictions provide a basis for believing that
the moment conditions are plausible, they are also generally debatable. That is, it is hard to know
whether there are unmodeled sources of confounding or sources of misspecification that would
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result in moment conditions failing to hold exactly in any given empirical setting. Unfortunately,
it is well-known that estimation and inference results obtained under the assumption that
moment restrictions hold exactly can be substantially distorted in the sense of returning biased
estimates and delivering unreliable conclusions. See, for example, Hansen and Sargent (2001,
2008, 2010), Hall and Inoue (2003), Cheng et al. (2019), and Hansen and Lee (2021).

In this paper, we consider one approach to estimation and inference within a semiparametric
structural model characterized by a set of moment restrictions, allowing for the possibility that
the specified moment conditions do not hold exactly. We consider a setting where a researcher
has access to an observable independent and identically distributed (i.i.d.) data stream {Zt }T

t=1
realized from unknown distribution Pµ∗ .1 The researcher specifies a structural model, defined in
terms of an economically meaningful k-dimensional parameter vector θ∗, that restricts the joint
distribution via moment conditions m(θ∗) = EPµ∗ [g (Zt ,θ∗)] = µ∗ for some q ≥ k dimensional
vector µ∗. Of course, informative inference about θ∗ is impossible without beliefs about µ∗.
Classical estimation and inference proceed under the dogmatic prior belief that µ∗ ≡ 0.

Rather than adopt dogmatic prior beliefs, we conceptualize the notion that moment restric-
tions are plausible – but not known to hold exactly – by assuming the researcher is able to place
an informative, but not dogmatic, prior distribution over µ∗. The use of a proper prior over
µ∗ allows informative inference about model parameters to proceed while relaxing the usual
restriction that µ∗ ≡ 0. By concentrating this prior over 0, we capture the notion that a researcher
subjectively believes the structural moment restrictions are “likely” to be correct. The spread and
shape of the prior away from 0 further captures the researchers’ beliefs about “likely” economi-
cally motivated possible deviations from the baseline structural model. Thus, the use of a proper
prior distribution over µ∗ provides a way for researchers to explicitly encode their subjective
beliefs over the plausibility of their structural model.

Given that we wish to only leverage structural moment conditions and choose to conceptualize
the plausibility of these moment conditions by using a proper prior distribution, it is natural to
consider estimation and inference based on approximate or quasi-Bayesian posteriors (QBP),
as in Kim (2002) and Chernozhukov and Hong (2003).2 QBPs provide a tractable approach to
approximate Bayesian estimation and inference in traditional semiparametric moment condition
models where µ∗ ≡ 0 is imposed; see, e.g., Kim (2002), Gallant (2016), Florens and Simoni (2021),
and Andrews and Mikusheva (2022). Outside of the Bayesian motivation, Chernozhukov and
Hong (2003) demonstrate that these estimators have desirable frequentist properties within the
moment condition framework when µ∗ ≡ 0. In addition, Andrews and Mikusheva (2022) verifies
that quasi-Bayes decision rules approximate Bayes’ optimal decision rules within the weakly
identified GMM framework.

1While we maintain the assumption that the Zt are independent and identically distributed, some of our

theoretical results hold more generally. We briefly comment on extensions to non-i.i.d. settings in Section 4.3.
2In Chernozhukov and Hong (2003), estimators produced from quasi-Bayesian posteriors are referred to as

Laplace-Type Estimators (LTEs). These approaches are also connected to "probably approximate correct inference",

e.g., Catoni (2004).
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In this paper, we extend the QBP framework to deal with settings where moment conditions
are not assumed to hold exactly, i.e., to settings with non-dogmatic prior over µ∗. We refer to
estimation and inference within this setting as plausible GMM (PGMM). A central challenge in
this setting is that θ∗ and µ∗ are not jointly identified, which implies that the impact of priors
is not asymptotically negligible. We develop new technical results that address this challenge
and show that, under suitable regularity conditions, key properties of the QBP framework extend
to the PGMM setting. Building on Andrews and Mikusheva (2022), we verify that quasi-Bayes
decision rules approximate Bayes optimal decision rules given the provided subjective priors.
We also generalize the results of Chernozhukov and Hong (2003) to verify that interval estimates
from QBPs have a well-defined ex-ante notion of frequentist coverage under a sampling process
where nature first draws a degree of misspecification from the subjective prior for µ∗ and then
the model realizes conditional on this draw as in Conley et al. (2012) and analogous to the
coverage notion considered in Andrews et al. (2024). Finally, we provide novel large sample
approximations for quasi-posterior distributions within this partially identified framework,
allowing for the dimension of both θ∗ and µ∗ to increase with sample size. These results can be
viewed as new Bernstein-von Mises type theorems that explicitly account for additional terms
that arise when dealing with misspecification.

We illustrate the use of QBPs with proper priors over the degree of misspecification, µ∗,
via two empirical examples. A cost of allowing for potential misspecification by considering
non-dogmatic beliefs about µ∗ is that inferential statements must be less precise than those
obtained under dogmatic beliefs. The empirical applications demonstrate that one can still draw
economically meaningful conclusions using our approach in real applications under what we
consider to be sensible beliefs about model misspecification. The approach thus potentially
enhances the credibility of the qualitative empirical results. We also use the empirical examples
to discuss prior choice, illustrate the impact of prior choice on the resulting quasi-posteriors,
and discuss empirically motivated sensitivity analysis.

There is a large existing literature on sensitivity analysis and partial identification. Much of this
research focuses on establishing formal frequentist guarantees for estimating and performing
inference on the identified set. See, e.g., Canay and Shaikh (2017) and Molinari (2020) for
excellent reviews and Norets and Tang (2014), Kline and Tamer (2016), Chib et al. (2018), Liao
and Simoni (2019), Giacomini and Kitagawa (2021), Giacomini et al. (2022), and Kuang (2024) for
approaches leveraging Bayesian methods.

Within this literature, our work is closely related to Armstrong and Kolesár (2021). Armstrong
and Kolesár (2021) also considers a moment condition model where, under correct specifica-
tion, m(θ∗) = 0 for θ∗ the true population parameter value in their setup. They then allow for
misspecification by allowing for the possibility that m(θ∗) =CT ̸= 0 where the exact value of CT

is unknown but taken to be an element of a known set; see also Bonhomme and Weidner (2022).
Armstrong and Kolesár (2021) focuses on the setting where misspecification is taken to be of
the similar magnitude as sampling error, where CT = c/

p
T , though their approach also applies

when misspecification is not modeled as depending on the sample size. Armstrong and Kolesár
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(2021) provides a tractable approach to obtain valid frequentist inference, discusses performing
sensitivity analysis by varying the set to which CT is assumed to belong, and shows that optimal
GMM weighting matrices in this setting should trade off sampling uncertainty in the moments
with the magnitude of potential misspecification. In an analogous result, we verify that the QBPs
center on a GMM estimator that uses a weighting matrix that trades off moment precision with
misspecification as in Armstrong and Kolesár (2021) in a setting with Gaussian priors with prior
variance proportional to 1/T , though the exact structure differs.

Another related paper is Chen et al. (2018), which uses simulation from quasi-posteriors to
develop confidence sets that have frequentist coverage guarantees for identified sets in general
settings that include moment condition models. Chen et al. (2018) illustrate how to use their
approach in moment inequality models by augmenting the model with auxiliary parameter µ∗.
Rather than impose a proper prior over µ∗, Chen et al. (2018) use the known support restrictions
from the moment inequalities and profile out µ∗. Their procedure could readily be adapted
to settings with other support restrictions on µ∗, including the setting of our paper if valid
frequentist inference for the identified set under support restrictions is the ultimate goal. To
establish their results, Chen et al. (2018) develop Bernstein-von Mises type theorems for quasi-
posteriors under partial identification. We complement this contribution by establishing similar
results in the setting with a proper prior over µ∗. As the proper prior over µ∗ has important
impacts on posterior concentration, our formal results use different theoretical development
relative to the formal results in Chen et al. (2018) which may be of independent interest.

Our perspective is different from much of this previous work whose chief goal is establishing
frequentist guarantees under partial identification as we wish to impose a proper subjective
prior over µ∗. That is, we mostly maintain a subjective Bayesian perspective as we believe
there are settings where researchers will want to employ informative, subjective beliefs about
potential misspecification. Our work thus aligns closely with the strand of Bayesian work on
partial identification reviewed in Gustafson (2015). An element of this work is establishing
posterior concentration results. We contribute to this literature by providing such concentration
results within the semiparametric moment condition framework where the source of partial
identification is uncertainty about the potential misspecification. These concentration results
also allow us to consider frequentist properties of posterior summaries and thus complement
the broader literature on partial identification and sensitivity analysis.

Within the Bayesian literature on partial identification and misspecification, our setup resem-
bles Chib et al. (2018). Chib et al. (2018) consider a Bayesian semiparametric moment condition
model that includes an auxiliary parameter equivalent to µ∗ to capture the misspecification of
some moment conditions. However, Chib et al. (2018) focus on establishing posterior concentra-
tion on a well-defined pseudo-true value in the case of model misspecification, which requires
that the number of free elements in µ∗ is less than q −k. We instead allow for the possibility that
all elements of µ∗ are free, which precludes point identification of even a pseudo-true value and
complicates establishing asymptotic concentration. Our formal results differ substantially in
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that priors have a non-negligible impact on asymptotic results, and posteriors do not generally
concentrate on a unique pseudo-true value.

Finally, in interesting recent work, Andrews et al. (2024) consider Bayesian decision making
in a population minimum distance problem under potential misspecification. Andrews et al.
(2024) focus on the case where q > k and, among other results, provide a class of priors and a
confidence interval construction based on enlarging standard intervals in a way that depends on
the standard minimum distance overidentification test statistic that provides ex-ante coverage
under these priors. Similar to Andrews et al. (2024), we also establish a sense of ex-ante coverage,
though our results hold within the semiparametric moment condition framework under our
subjective prior over the degree of misspecification and cover the case where q = k.

The remainder of the paper is organized as follows. In Section 2, we more carefully discuss
the main ideas and provide a convenient approximation result for the case when the prior for
µ∗ is taken to be Gaussian with precision proportional to the sample size – the case of “local
misspecification.” We present the empirical illustrations in Section 3, and we provide formal
results in Section 4. We present further details and proofs in the Appendix and the Supplemental
Appendix.

2. THE APPROACH: MAIN IDEAS

2.1. Plausible Moment Restriction Model. Suppose that we observe data {Zt }T
t=1 which are a

realization from some unknown distribution Pµ∗ . Suppose that we also have a posited structural
economic model, which provides a set of moment restrictions on the distribution Pµ∗ indexed
by a q-dimensional parameter µ∗ ∈M . Specifically, suppose the structural model implies a set
of q ≥ k equations for a k-dimensional parameter θ ∈Θ

m(θ) = EPµ∗ [g (Zt ,θ)],

such that there exists a vector µ∗ corresponding to a target parameter θ∗ satisfying

m(θ∗) =µ∗.

Of course, with no restrictions on the vector µ∗, it is impossible to update beliefs about θ∗
or the distribution Pµ∗ using the structural model. For any posited value of θ and distribution
Pµ, we can always set µ= EPµ[g (Zt ,θ)] such that the structural moment equation is satisfied.3

Classical approaches to moment restriction models bypass this difficulty by assuming the vector
µ∗ is known to be a fixed, prespecified vector (without loss of generality µ∗ ≡ 0). This classical
approach is equivalent to imposing the dogmatic prior that the researcher knows the structural
moment equations hold exactly under Pµ∗ – that is, the researcher has a dogmatic prior that the
moment equations are correctly specified.

3Priors over θ∗ and Pµ∗ produce restrictions over µ∗, but the structural moment restriction adds no additional

information if µ∗ is left completely unrestricted.
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Unfortunately, it is hard to be fully confident that a set of structural moment restrictions hold
exactly in many settings. For example, we may worry that there are unobserved confounding
variables or that the functional form of the structural model is incorrect. We allow for departures
from the dogmatic belief that the structural moment restrictions hold exactly by making use of a
proper, non-degenerate prior distribution over µ∗, denoted π(µ). The use of a proper prior over
µ∗ allows moment restrictions to be informative in updating beliefs about θ∗ while falling short
of imposing the often implausible restriction that moment restrictions hold exactly.

As a concrete example, consider the constant coefficient linear model

Yt = X tθ∗+Ut ,

where X t is an observed variable with EPµ∗ [X tUt ] ̸= 0. Further, suppose we observe an additional
variable D t that, based on economic reasoning or institutional knowledge, we believe satisfies the
usual instrument exclusion restriction EPµ∗ [D tUt ] = 0 for t = 1, ...,T . Under this belief, we obtain
the moment restriction EPµ∗ [D tUt ] = 0 which can be used to identify the structural parameter
θ∗.

However, it is hard to know that the IV exclusion restriction holds exactly in many settings.
For example, we might worry that there exists an unobserved confound, Mt , that covaries with
both Yt and D t such that Ut = Mt +Vt , EPµ∗ [D t Mt ] = µ∗ ̸= 0 and EPµ∗ [D t Vt ] = 0. Imposing the
moment restriction EPµ∗ [D tUt ] = EPµ∗ [D t (Yt −θX t )] = 0 and solving for θ produces

θ =
(
EPµ∗ [D t X t ]

)−1
EPµ∗ [D t Yt ] = θ∗+

(
EPµ∗ [D t X t ]

)−1
µ∗ ̸= θ∗.

Within the IV example, we might instead consider the restriction EPµ∗ [D t (Yt −θ∗X t )] = µ∗
where we assume that µ∗ is a fixed realization from a random variable µ, e.g., µ∼ N (0,σ2). Here,
the assumed distribution captures the notion that the researcher believes the instrument is
“close to” being valid in that the prior mass for µ is concentrated around 0. The distribution also
encapsulates that the researcher believes it is incredibly unlikely that the moment restriction is
perfect as {µ= 0} occurs with zero probability under such a distribution. Finally, the researcher
can control beliefs about the strength of the unobserved confounder via the prior variance, σ2,
while technically allowing for µ∗ to be unbounded. That is, the proper prior over µ∗ allows a well-
defined and concrete description of the moment restriction being plausibly, but not certainly,
satisfied.

To summarize, we are interested in a formalized version of a “plausible” moment restriction
model characterized by parameters (θ,µ) such that

m(θ) =µ
and µ is governed by a prior distribution with density π(µ). We refer to µ as the “plausibility
characteristic,” and we denote any root of the equation m(θ) =µ as θ(µ). For establishing some
of the formal results in Section 4, we will assume that π(µ) places strictly positive mass over
a region Γ such that solutions θ(µ) exist for µ ∈ Γ. This prior restriction is essentially trivially
satisfied for any prior when q = k; see, e.g. Hall and Inoue (2003). However, satisfaction of this
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assumption is not guaranteed with q > k, suggesting that care should be taken in adding moment
conditions about which a researcher has relatively weak prior beliefs unless the researcher is
willing to use very diffuse priors.4

In the next section, we outline a quasi-Bayesian approach to perform inference on our main
target parameter θ.

2.2. (Quasi-)Bayes for Plausible Moment Restrictions. We adopt a (quasi-)Bayesian approach
to performing inference within the plausible moment restriction model. Let

m̂(θ) := 1

T

T∑
t=1

g (Zt ,θ)

be the average of g (Zt ,θ) against the empirical distribution at a given value of θ. We can then
define a continuous updating GMM-type criterion function for parameters (θ,µ) as

QT (θ,µ) =−T
(
m̂(θ)−µ)⊤

Ω̂T (θ)−1 (
m̂(θ)−µ)

(1)

for Ω̂T (θ) a positive definite matrix approximating

Ω(θ) = lim
T→∞

Var(
p

T (m̂(θ)−m(θ))).

For example, it would make sense to use

Ω̂T (θ) = 1

T

T∑
t=1

(
g (Zt ,θ)−m̂(θ)

)(
g (Zt ,θ)−m̂(θ)

)⊤
under the assumption that the Zt are i.i.d.

A quasi-posterior based on criterion (1) is then obtained as

pT (θ,µ) = exp
(1

2QT (θ,µ)
)
π(θ,µ)∫

Ξexp
(1

2QT (θ,µ)
)
π(θ,µ)dµdθ

(2)

where π(θ,µ) =π(θ|µ)π(µ) is the joint prior over (θ,µ) and Ξ is the corresponding (joint) prior
support. We expect researchers will often specify constant priors over θ – i.e. set π(θ|µ) ∝ 1.
However, just as it does withµ, the quasi-Bayes approach offers a convenient avenue for imposing
economically motivated priors over θ, which may be desirable in some settings. In general,
pT (θ,µ) will not be available analytically but will need to be approximated using Markov Chain
Monte Carlo (MCMC) or other sampling methods; see, e.g., Robert and Casella (2005) for a classic
textbook introduction. We also provide a simple Gaussian approximation to the posterior in a
setting where the prior for µ is taken to be normal with a small variance in Section 2.3.

4From a frequentist perspective, Armstrong and Kolesár (2021) note that usual overidentification statistics can

be used to infer lower bounds on the magnitude of µ. Andrews et al. (2024) consider an interesting different

approach in overidentified settings that operationally inflates the size of confidence sets based on the magnitude of

overidentification statistics.
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We obtain marginal posteriors for θ and µ as usual by integration:

pT (θ) =
∫
M

pT (θ,µ)dµ and pT (µ) =
∫
Θ

pT (θ,µ)dθ,

where M andΘ respectively denote the support of µ and θ. pT (θ) captures posterior informa-
tion about the economically meaningful parameter θ and thus is the chief object of interest.
pT (µ) also potentially provides useful information in summarizing posterior beliefs about the
plausibility term µ.5

Given the quasi-posterior, we can also immediately formulate optimal decisions under the
quasi-posterior by minimizing the quasi-posterior expected risk. Specifically, let ℓ(θ,µ,d) be a
loss function that depends on the underlying model parameters (θ,µ) and a decision d ∈ D.6

We can then define the expected loss minimizing decision under the quasi-posterior, denoted
sT (pT ), as

sT (pT ) ∈ argmin
d∈D

∫
Ξ
ℓ(θ,µ,d)pT (θ,µ)dµdθ. (3)

The quasi-posterior (2) and inferential objects obtained from it, such as optimal decisions or
credible intervals, can be given an approximate Bayesian interpretation. Florens and Simoni
(2021) and Andrews and Mikusheva (2022) study the classic semiparametric moment condition
model under correct specification such that m(θ∗) ≡ 0, i.e., under the dogmatic prior that µ≡ 0.
Florens and Simoni (2021) provide prior choices for the unknown model density such that the
analog of (2) within this setting corresponds to the posterior for θ as the limit when the prior
becomes diffuse. By augmenting the parameter space to include µ, (2) can be obtained as
the posterior over (θ,µ) under the prior structure of Florens and Simoni (2021). Andrews and
Mikusheva (2022) study optimal decision rules in weakly identified moment condition models
under correct specification such that m(θ∗) ≡ 0. Andrews and Mikusheva (2022) establish that
the analog of (2) for their setting, corresponding to (2) under the dogmatic prior that µ ≡ 0,
results as the limit of a sequence of posteriors under a specific choice of proper priors. The
resulting quasi-Bayes decision rule then corresponds to the pointwise limit of the sequence of
Bayes decision rules and can thus be motivated as approximating the optimal Bayes decision.
We show that these results continue to apply in our setting with non-dogmatic prior over µ in
Section 4. Of course, given the non-degenerate prior over µ, the optimal Bayes decision depends
explicitly on not only the prior for θ as in Andrews and Mikusheva (2022) but also on the prior for
µ. See also Kim (2002) and Gallant (2016) for additional Bayesian motivation and perspective.

From a purely frequentist perspective, Chernozhukov and Hong (2003) verify that inference
based on the quasi-posterior is asymptotically equivalent to inference based on efficient GMM
in strongly identified settings under correct specification (m(θ∗) ≡ 0). Chernozhukov and Hong
(2003) further argue that basing frequentist estimation and inference on posterior summaries

5Note that, while θ and µ are not jointly identified, the imposition of a proper prior over either θ or µ will lead to

posterior updating over both θ and µ, even in settings with q = k.
6In most applications, this loss function will depend only on the economically motivated parameter θ, but we

allow the loss to be over µ as well.
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from (2), such as using the posterior mean as a point estimator and posterior credibility interval
as a confidence interval, may be desirable in settings where (1) is hard to optimize. However,
credible intervals resulting from the quasi-posterior (2) within the partially identified setting
where µ follows a non-degenerate prior no longer generally deliver usual frequentist coverage
guarantees, though they do still have an approximate Bayes interpretation; see Moon and
Schorfheide (2012) and Gustafson (2015).7

We extend the results from Chernozhukov and Hong (2003) by studying the frequentist proper-
ties of the quasi-Bayes posterior within our setting with a non-dogmatic prior over µ allowing for
sequences with increasing k and q in Section 4. Within this setting, we provide new Bernstein-
von Mises type posterior concentration results showing that the quasi-posterior converges to a
mixture of Gaussian distributions where the mixture weights and components depend heavily
on the specific prior π(µ). That is, the posterior aligns with our intuition about partial identi-
fication in that the prior for µ plays a key role in the shape of the posterior even in the limit.
See also Gustafson (2015). In the case that one has a dogmatic prior over µ—e.g., µ≡µ∗—our
concentration result reproduces Chernozhukov and Hong (2003), in the sense that our posterior
approximation collapses to a Gaussian random variable with center θ(µ∗) and variance equal to
the limiting variance of the efficient GMM estimator in this case.

Based on the posterior concentration results, we then have that usual Bayesian credible re-
gions from the quasi-posterior (2) have correct frequentist coverage within a two-stage sampling
thought experiment where each repeated sample corresponds to drawing a value µ∗ from a ran-
dom variable with density π(µ) and then generating data such that m(θ(µ∗)) =µ∗. Alternatively,
one can view this notion of coverage as providing an ex ante coverage guarantee in a setting
where a single value µ∗ will be realized from a random variable with density π(µ).

Given that the two-stage sampling notion of coverage is non-standard, we consider a final
approach to leveraging (2) to provide a confidence set with a uniform frequentist coverage
guarantee when the plausibility characteristic is taken to be some fixed vector, µ0, whose value is
unknown, but where it is known that µ0 ∈C for some known compact set C . The basic idea is
that we can use QBPs exactly as in Chernozhukov and Hong (2003) to obtain point and interval
estimates that would be asymptotically equivalent to efficient GMM for any fixed µ∗ ∈C under
strong identification. Letting C I (µ∗,α) be the resulting (1−α)% credible interval, it then follows
that ∪µ∗∈C C I (µ∗,α) has coverage at least (1−α)% for θ(µ0). This approach mimics, e.g., the
union of confidence intervals approach from Conley et al. (2012) and the approach outlined in
Remark 3.3 of Armstrong and Kolesár (2021).

7Andrews and Mikusheva (2022) also show that quasi-posterior interval estimates generally do not provide

correct frequentist coverage in weakly identified settings and suggest a procedure to obtain confidence sets with

proper frequentist coverage. We choose to focus our coverage results on strongly identified settings while allowing

for a non-dogmatic prior over µ. In principle, the weak identification robust confidence set construction of Andrews

and Mikusheva (2022) could also be incorporated in the present setting.
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2.3. Simple Quasi-Bayes Inference using Gaussian Local Priors. In this section, we outline an
approach to doing approximate quasi-Bayes inference when the prior for the plausibility term µ

is normal with a small variance. Specifically, suppose that our prior is

µ∼N

(
µ0,

Λ

T

)
(4)

for some fixed q dimensional vector µ0 and a fixed, full-rank q × q matrix Λ.8 A simple form
of Λ is a diagonal matrix with λk ’s on the diagonal, where a small λk indicates that there is
little uncertainty about the plausibility of the k-th moment and larger values indicate higher
uncertainty.

Intuitively, prior (4) captures the case where misspecification is believed to be small but
non-zero in the sense that we believe the moment conditions “almost” hold with m(θ0) = µ0.
Considering a sequence of priors with variance of order 1/T means that prior uncertainty
concentrates at the same rate as the sample moments, so neither will dominate as we consider
large T asymptotic approximations. Following the literature, we refer to (4) as a local prior; see,
e.g. Conley et al. (2012) and Armstrong and Kolesár (2021).

We now provide an approximation to the quasi-posterior with π(µ) defined in (4) and a flat
prior over θ. We assume µ0 is such that a solution θ(µ0) satisfying m(θ(µ0)) = µ0 exists. For
simplicity, we further set µ0 = 0. We assume strong identification in the sense that m(θ(µ)) =µ
has unique solution θ(µ) for each µ and that the following linearization around θ0 ≡ θ(µ0) holds:

m(θ(µ)) =G(θ(µ)−θ0)+o(∥θ(µ)−θ0∥),

where G = ∂E(m̂(θ))/∂θ|θ=θ0 and G⊤G has minimal eigenvalue bounded away from zero. Further,
define the weighting matrix ÂT,θ and its population counterpart Aθ:

ÂT,θ = Ω̂T (θ)−1 − Ω̂T (θ)−1[Λ−1 + Ω̂T (θ)−1]−1Ω̂T (θ)−1,

Aθ =Ω(θ)−1 −Ω(θ)−1[Λ−1 +Ω(θ)−1]−1Ω(θ)−1.

Under these conditions, we show in Section 4 that pT (θ) is approximately proportional to,

exp
(
−T ∥m̂(θ̂)+G(θ− θ̂)∥2

ÂT,θ
/2

)
,

where the quasi-posterior mode θ̂ is the GMM estimator obtained using weighting matrix ÂT,θ.
That is, we can approximate the quasi-posterior for θ as

θ ≈N

(
θ̂,

V

T

)
, V = (

G⊤ ÂT,θG
)−1

. (5)

Note that the weighting matrix Aθ0 in the quasi-posterior is different from the standard efficient
GMM weighting matrixΩ(θ0)−1.9 Specifically, Aθ0 reflects additional uncertainty brought by not
having a fixed, known value for µ. We do see that we recover the case of efficient GMM by letting
Λ→ 0—i.e. by assuming that there is no uncertainty over the moment conditions.

8We could relax the restriction thatΛ is full-rank at the cost of a modest complication of notation.
9As ÂT,θ will converge to Aθ0 with T →∞, we provide intuition as if Aθ0 were known.



11

The quasi-posterior has several interesting features. The center of the quasi-posterior, θ̂,
corresponds to the classical GMM estimator that uses the weighting matrix Aθ0 rather than the
efficient weighting matrixΩ(θ0)−1. This centering is intuitive asΩ(θ0) captures only sampling
variation in the moments but does not reflect the additional uncertainty arising from the plau-
sibility of the moments. The weighting matrix Aθ0 incorporates both sources of uncertainty,
intuitively placing the most weight on moments about which the researcher is most confident in
the sense that combined sampling variability and plausibility uncertainty is lowest.

Looking at the quasi-posterior variance, there are two further noteworthy features. First,
the variance matrix V = (G⊤Aθ0G)−1 ≥ (G⊤Ω(θ0)−1G)−1, where (G⊤Ω(θ0)−1G)−1 is the usual
asymptotic variance of the efficient GMM estimator. The variance matrix V thus captures
additional uncertainty, relative to efficient GMM, introduced by a lack of certainty over the
validity of the moment restrictions. Second, the approximate sampling distribution of θ̂ is

p
T (θ̂−θ0) →d N (0,V̄ ), V̄ = (G⊤Aθ0G)−1G⊤Aθ0Ω(θ0)Aθ0G(G⊤Aθ0G)−1,

where V̄ ≤ V because Aθ0Ω(θ0)Aθ0 ≤ Aθ0 . Thus, the quasi-posterior variance is also larger
than the asymptotic variance of the Aθ0 -weighted GMM estimator. Again, this larger quasi-
posterior variance arises because the sampling distribution of the Aθ0 -weighted GMM estimator
is obtained under the dogmatic belief that µ≡ 0 and thus does not reflect uncertainty about the
validity of the moment restrictions outside of through reweighting the moment conditions.

To summarize, the approximation in (5) provides a very simple avenue to obtain approximate
Bayesian inference under local Gaussian priors. While restrictive, it does seem like a Gaussian
prior with small variance may provide a reasonable model for subjective beliefs about moment
condition violations in some settings, and we illustrate the use of the approximation, along with
illustrating simulation of the full quasi-posterior, in the empirical examples in the next section.
More importantly, the approximation captures the clear intuition that there is no free lunch.
Incorporating non-dogmatic priors over moment condition violations naturally results in less
informative inference relative to the case where dogmatic priors are imposed – reflecting the
researcher’s uncertainty about the validity of the moment restrictions. This property seems
desirable as the resulting inference likely more accurately reflects what can be learned in real
empirical settings where model uncertainty exists.

3. EMPIRICAL APPLICATIONS

This section applies plausible GMM in two illustrative empirical applications. In the first,
we revisit Acemoglu et al. (2001), which uses linear instrumental variables (IV) to study the
effect of institutions on economic output in a relatively small sample. In the second, we revisit
Chernozhukov and Hansen (2004), which uses IV quantile regression to examine the effects of
401(k) participation on measures of household assets.
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3.1. Linear IV Example: Effect of Institutions on GDP. We start by illustrating our methodology
by revisiting the classic study of Acemoglu et al. (2001), which investigates the effect of institutions
on economic performance.The outcome variable Yt is the log of PPP-adjusted GDP per capita
in 1995 where t = 1, . . . ,64 indexes a set of countries that are ex-European colonies. The main
regressor of interest, X t , is a ten-point index measuring protection against expropriation risk,
serving as a proxy for institutional quality. We consider a baseline specification from Acemoglu
et al. (2001) which includes normalized distance from the equator, Wt , as a control for geographic
factors.

To address concerns about the endogeneity of X t , Acemoglu et al. (2001) adopt an IV strategy.
Following Acemoglu et al. (2001), we consider two IV specifications. The first, denoted Linear
IV(1), uses the log of settler mortality as the sole instrument. This specification corresponds to
the baseline in the original study. The second specification adds the proportion of the population
of European descent in 1900 as an additional instrument as is done in a robustness exercise in
the original paper. This specification allows us to illustrate our procedure in a setting with an
overidentifying moment restriction. We refer to this specification as Linear IV(2).

Formally, we consider the linear IV model

Yt =α+βX X t +βW Wt +Ut ,

with parameter vector θ = (α,βX ,βW )⊤ and moment condition

g (Zt ,θ) = (1,D⊤
t ,Wt )⊤

(
Yt −α−X tβX −WtβW

)
,

where D t denotes the vector of instruments.

To implement PGMM, we must specify priors for the parameters (θ,µ). We set the prior for θ as
N (0,diag(100,4,64)). We set the prior variances for the elements of θ via a loose argument based
on economic intuition. For example, we know that the X t is measured on a 10-point scale with
empirical 25th and 75th percentiles equal to 5.6 and 7.8, respectively, and an empirical range of
3.5 to 10. A coefficient of βX of approximately .5 would thus suggest moving from the 25th to
75th percentiles of X t is associated with around a one log unit change (around a 170% change)
in GDP, which seems economically quite large. We thus feel comfortable placing a relatively low
prior probability on βX having a magnitude larger than 4. We use the same rationale for our
choice of the prior over α and βW .

To specify the prior for µ, we use reasoning based on the IV model. Specifically, we assume
that model misspecification arises from the instrument(s) having a direct effect on the outcome.
That is, we consider an “augmented” model

Yt =α+βX X t +βW Wt +γ′D t +Ut ,

where γ represents the direct effect of the instrument on the outcome. Considering the setting of
Linear IV(1), this augmented structure then suggests that we would specify the moment equation
as E[g (Zt ,θ)] = γE[D2

t ] =µ if we knew γ. If we then were willing to maintain the belief that the
justification for exclusion of D t is convincing enough for us to believe that we should center
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our prior for γ over no direct effect, we would want to specify a prior centered over 0. Given
that D t is log mortality among Europeans several hundred years prior to 1995, one might also
be willing to say that there is relatively little scope for the direct effect of D t to be large. We
benchmark our prior using the subjective belief that, with high probability, the elasticity of GDP
with respect to settler mortality is no larger than 10%, corresponding to γ no larger than 0.1.
We then encode these prior beliefs by specifying the prior for the entry of µ corresponding to

the D t moment as a mean zero Gaussian with standard deviation 0.05
√

1
T

∑
t D2

t . We believe
this provides a sensible benchmark in this example, encoding the prior belief that we found the
original argument in Acemoglu et al. (2001) compelling in having prior mass tightly concentrated
around 0 but allowing for modest probability of relatively large deviations (say direct effects with
magnitudes between 0.05 and 0.1) and relatively small probability of larger deviations. We then
complete the prior by assuming the other entries of µ behave similarly to the one corresponding
to the instrument. Specifically, our baseline (denoted “PGMM-g”) uses a Gaussian prior given by

µ∼N (0,ΣTΩdΣ
⊤
T ),

where ΣT = T −1 ∑T
t=1(1,Wt ,D t )⊤(1,Wt ,D t ) andΩd = 0.052I3.

For Linear IV(2), we follow a similar approach. Here, the additional instrument is the propor-
tion of the population of European descent. Assuming its direct impact on the outcome is, with
high probability, no greater than 0.01 (a semi-elasticity of 1%), we extend the Gaussian prior
construction used in Linear IV(1) by setting

Ωd = diag(0.052I3,0.0052),

where the final diagonal entry corresponds to the new instrument.

Of course, it is important to gauge sensitivity of the posterior to the prior specification. We thus
report results using two additional simple prior settings. In the first, we consider a more diffuse
prior for µ (denoted “PGMM(d)-g”), given by N (0,cΣTΩdΣ

⊤
T ) with c = 4. As a second alternative,

we also consider a uniform prior for µ (denoted “PGMM-u”), distributed uniformly over the ellip-

tical region C = {
(
ΣTΩdΣ

⊤
T

)1/2
c : c ′c ≤χ2

0.68(q)}, where q is the number of moment conditions,
and χ2

0.68(q) denotes the 0.68 quantile of χ2(q). This prior thus allocates all probability mass to
the 68% highest density region of the Gaussian prior used in the “PGMM-g” case.

We report the PGMM quasi-posterior obtained under our different priors, along with the
quasi-posterior from Chernozhukov and Hong (2003) obtained under the dogmatic prior µ≡ 0
(labeled "CH"), for βX in the specification with one excluded instrument in the top panel of
Figure 1.10 We see that, in terms of βX , the quasi-posteriors are relatively robust to the prior
over µ. As anticipated, we see that the quasi-posteriors become somewhat more diffuse as
the prior dispersion increases from µ ≡ 0 to PGMM-g to PGMM(d)-g, although the changes
in dispersion are relatively small, despite the large increase in prior dispersion for µ across
these cases. Unsurprisingly given the design of the uniform prior, we also see that both the

10Quasi-posteriors in the Linear IV(2) case, shown in Figure 4 in the Appendix, exhibit similar patterns. We also

present posteriors for elements of µ, which roughly align with the corresponding priors, in Figure 5 in the Appendix.
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FIGURE 1. Upper panel (a): Linear IV (1) marginal (quasi-)posterior(s) for βX and its marginal

prior (red dotted curve). Lower panel (b): Linear IV(1) 95% HPD intervals for βX resulting from

the PGMM approach along various priors for µ, i.e., N (0,cΣTΩdΣ
⊤
T ) for various values of c.

benchmark Gaussian prior (PGMM-g) and related uniform prior (PGMM-u) produce very similar
quasi-posteriors for βX .
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For additional insight, we provide 95% HPD intervals for βX under µ∼N (0,cΣTΩdΣ
⊤
T ) for

additional values of c in the bottom panel of Figure 1. Here, we see that the lower bound of the
HPD interval is relatively stable for values of c ≤ 4. However, the lower bound then decreases
relatively quickly as c increases away from 4, crossing 0 at c ≈ 4.5. That is, under our prior for θ
and class of priors for µ, posterior mass remains largely concentrated over positive effects even
allowing for what appear to us be economically large deviations from correct specification.

Finally, we observe that the left tails of the quasi-posteriors in Figure 1 are very similar to the
upper tail of the maintained prior for βX . That is, it appears that the behavior of the upper tail of
the posteriors may be driven largely by the prior choice for θ. Consequently, the upper bounds of
the provided intervals are relatively insensitive to the prior for µ. While unsurprising, we find this
interplay between prior structure interesting, especially as researchers often have reasonable
economic understanding about plausible values for structural parameters.

We report interval estimates obtained from a variety of procedures under both the Linear
IV(1) and Linear IV(2) specification in Table 1. For frequentist methods, we report 95% level
confidence intervals, and we report 95% level HPD regions for (quasi-)Bayesian procedures.
Specifically, we consider intervals produced by applying the following:

• 2SLS: two-stage least squares with the usual asymptotic approximation.
• CUE: continuous updating estimator with the usual asymptotic approximation.
• CH: PGMM under µ≡ 0; the quasi-Bayes approach from Chernozhukov and Hong (2003).
• S: inversion of the S statistic; see Theorem 2 from Stock and Wright (2000).
• AK: robust intervals constructed using the local misspecification method of Armstrong

and Kolesár (2021) assuming a true value θ∗ such that g (θ∗) = c/
p

T ,c ∈C for C specified
as an in PGMM-u.

• PGMM-u: PGMM with uniform prior as previously specified.
• PGMM-g: PGMM with baseline Gaussian prior.
• PGMM(d)-g: PGMM with diffuse Gaussian prior.
• Local Approx: Gaussian limiting approximation for the βX marginal quasi-posterior of

"PGMM-g" under the assumption of local misspecification as described in Equation (5)
and Theorem 1.

• Local Approx (d): Gaussian limiting approximation for the βX marginal quasi-posterior
of "PGMM(d)-g" under the assumption of local misspecification as described in Equation
(5) and Theorem 1.

All approaches allow for heteroskedasticity. 2SLS, CUE, CH, and S maintain the assumption of
correct specification. All other procedures allow for departures from correct specification by
relaxing the constraint that µ≡ 0, with AK being frequentist valid and the remaining procedures
having a (quasi-)Bayes interpretation. We note that S is formally valid under weak identifica-
tion, while formal frequentist results for the other procedures are obtained assuming strong
identification.
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Methods Linear IV(1) Linear IV(2)
Assuming correct specification, i.e., µ≡ 0
2SLS [0.56, 1.38] [0.64, 1.23]
CUE [0.56, 1.38] [0.64, 1.21]
CH [0.61, 3.59] [0.63, 3.56]

Weak identification robust
S [0.63, 3.23] [0.63, 4.55]

Misspecification robust
AK [-28.86, 30.80] [-0.87, 2.66]
PGMM-u [0.58, 3.65] [0.53, 3.78]
PGMM-g [0.49, 3.79] [0.54, 3.65]
PGMM(d)-g [0.22, 3.81] [0.30, 3.73]
Local Approx [0.52, 1.42] [0.53, 1.36]
Local Approx(d) [0.42, 1.52] [0.35, 1.57]

TABLE 1. 95% interval estimates for βX , the effect of institutions on output, ob-
tained from different procedures as described in the main text.

Table 1 shows that, with the exception of the AK interval, the qualitative conclusions are
largely consistent across methods: The centers and lower bounds of the intervals lie above
zero, suggesting a positive effect of institutions on output. Further, the interval estimates
broadly fall within two groups—with 2SLS, CUE, Local Approx, and Local Approx(d) in one
and CH, S, PGMM-u, PGMM-g, and PGMM(d)-g in the other. Interestingly, the 2SLS, CUE, and
local approximation intervals all rely on asymptotic approximations obtained under strong
identification and are substantially narrower than the other intervals. This narrowness may
reflect a failure of the conventional asymptotic approximation. In contrast, we obtain the CH and
PGMM intervals directly from (quasi-)posteriors without relying on asymptotic approximations.
It seems interesting that these intervals are so similar to the interval produced by the weak-
identification robust procedure. While this similarity may be coincidental, it is notable and
potentially worth further exploration.

Looking at the quasi-Bayes procedures specifically, recall that the CH method imposes the
validity of the moment conditions, while the PGMM procedures relax this assumption. This
relaxation, of course, results in the PGMM intervals being wider than CH as the PGMM intervals
reflect the added uncertainty from accounting for potential misspecification. However, at least
under the priors considered, the increase in width is relatively small and does not qualitatively
change the conclusions that one would draw relative to CH.

Finally, we observe that the AK intervals lead to qualitatively different conclusions than
those from the other approaches. This difference is particularly pronounced in the Linear IV(1)
specification, where the AK interval is substantially wider than the intervals produced by the
alternative methods. The most informative comparison is between AK and PGMM-u, as both
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restrict the plausibility term to lie within the same support. The key distinction is that the
AK approach is designed to ensure valid frequentist coverage by focusing on least favorable
directions within the misspecified model, given only the support restriction on the plausibility
term. In contrast, PGMM-u imposes proper subjective priors on both the plausibility term
and the structural parameters, θ. In this example, the subjective priors place very little mass
on models with economically extreme values of βX , resulting in the quasi-posterior assigning
negligible mass to much of the AK interval. This outcome illustrates how subjective priors can
substantially shape the quasi-posterior in partially identified settings. Rather than targeting
worst-case combinations, the quasi-posteriors reflect economically motivated beliefs about
the joint distribution of the structural parameters and the plausibility term. Both approaches
serve meaningful purposes, but we believe there are scenarios in which inference based on the
quasi-posterior under subjective priors may offer more economically relevant insights.

3.2. IV Quantile Regression Example: Effect 401(k) Participation on Financial Assets. In this
subsection, we illustrate the use of PGMM in a non-linear model by using IV quantile regression
(IVQR) to estimate the impact of 401(k) participation on quantiles of net financial assets as
in Chernozhukov and Hansen (2004). Specifically, we apply PGMM using the IVQR moment
conditions from Chernozhukov and Hansen (2005):

gτ(Zt ,θτ) = (1,D t ,W ⊤
t )⊤

(
τ−1

(
Yt ⩽ατ+X tβX ,τ+W ⊤

t βW,τ
))

where τ denotes the quantile of interest; Yt is the outcome variable representing net total
financial assets (in 1991 dollars); X t is a binary indicator for 401(k) participation; Wt is a vector of
control variables; and D t is a binary instrument indicating 401(k) eligibility.11 We report results
for three quantiles, τ ∈ {0.15,0.5,0.85}, to illustrate performance for a low, central, and upper
quantile.

The basic argument for 401(k) eligibility being a valid instrument for participation is that
eligibility is determined by employers and so may plausibly be taken as an exogenous after
conditioning on job relevant covariates. See, e.g., Abadie (2003) for further discussion of the
underlying exclusion restriction. Of course, there are reasons that one might worry that the
exclusion restriction does not hold perfectly. For example, one might conjecture that firms
that offered 401(k) plans were attractive to employees who prefer savings for other, unobserved,
reasons. Motivated by such concerns, Conley et al. (2012) explore sensitivity of linear IV estimates
of the effect of 401(k) participation on financial assets. Our analysis extends this line of work by
investigating the sensitivity of quantile treatment effect estimates. We also note that examining
quantile effects may be of substantive economic interest given the strong asymmetry of financial
asset holdings and potential interest in the effect of 401(k) plans on savings for those at different
points of the wealth distribution.

11The covariates are income, a quadratic in age, family size, four indicators of education categories, marital

status, two-earner status, defined benefit pension status, IRA participation, and home ownership. For more details

about the data, see, e.g., Abadie (2003) and Chernozhukov and Hansen (2004).
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Of course, implementing PGMM requires specification of priors for the structural parameters,
θτ, and plausibility terms, µτ. In this example, we use the same diffuse prior for each θτ—

θτ ∼N
(
0, 1010

5 I14

)
—for all reported results. Given the magnitude of the outcome variable and

units of the input variables,12 this prior seems to be extremely uninformative.

The more delicate choice is the prior over the local misspecification parameter µτ. As in the
previous example, we assess sensitivity to this choice by considering both zero-mean Gaussian
priors and zero-mean uniform priors for each of our three values of τ. We set baseline priors
using a stylized model for misspecification. Specifically, we construct a bound on the moment
conditions, denoted δτ, under the assumption that any misspecification arises from a direct
effect of D t on Yt , capped at 2000 dollars in absolute value. To simulate this bound, we compute

max
γ∈{−2000,2000}

∣∣∣∣∣ 1

T

T∑
t=1

(1,D t ,W ⊤
t )⊤

(
τ−1

(
ϵt +D tγ⩽ 0

))∣∣∣∣∣ ,

where the ϵt are generated as the residuals from the linear IV analog of our quantile models.
Using the resulting δτ, we define priors for µτ as c ·N (

0,diag(δτ/3)2
)

or as uniform priors over
[−cδτ/3,cδτ/3]. To explore varying degrees of prior concentration, we consider c ∈ {0,0.5,0.9,1.0},
where c = 0 corresponds to the dogmatic prior that maintains correct specification.

Figure 2 displays marginal quasi-posteriors for both βX ,τ and the component of µτ associated
with the IV moment condition, denoted by µD,τ, under the Gaussian prior for µτ with c = 1.13

For comparison, we also provide the marginal quasi-posterior for βX ,τ under the assumption of
correct specification (c = 0) in dashed curves. We see that the quasi-posteriors for the quantile
effect obtained under correct specification concentrate over positive values for each value of
τ, suggesting a robust positive effect of 401(k) participation on net financial assets. The quasi-
posteriors under correct specification are suggestive of larger quantile treatment effects at higher
quantiles.

Looking at the PGMM quasi-posteriors, we see that allowing for departures from correct
specification according to our prior leads to substantially more diffuse quasi-posteriors. For
τ = 0.15 and τ = 0.85, the quasi-posterior for βX ,τ now places substantial mass on both large
positive and large negative values. This implies that, once we allow for plausible violations of
the exclusion restriction—consistent with the instrument having up to a $2,000 direct effect on
savings—it becomes difficult to draw reliable conclusions about the lower and upper quantile
treatment effect of 401(k) participation. The resulting intervals for low and high quantiles
from “PGMM-g” in Figure 3 span from -7.88 to 18.09 and -13.66 to 33.23 (in units of 103),
respectively. In contrast, the quasi-posterior for the median remains concentrated over positive
values, suggesting a relatively robust positive median treatment effect of 401(k) participation.

Interestingly, Figure 2 reveals that the marginal quasi-posterior distributions of µD,τ differ
noticeably from the prior. In particular, the quasi-posterior for τ = 0.15 (τ = 0.85) is shifted

12For example, the 0.15 and 0.85 quantiles of Yt are approximately −2751 and 36,303, respectively.
13We provide quasi-posterior plots for the remaining settings in Figures 6-11 in the Appendix.
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FIGURE 2. CH (dashed black curves, µ≡ 0) and PGMM marginal quasi-posteriors (solid black

curves) for βX ,τ and µD,τ. Examples shown use Gaussian priors over µ that vary with τ with c = 1

as described in the main text. The red dashed curves represent the marginal prior density curves

for the displayed parameters.

to the left (right) relative to the prior. The quasi-posterior for the median remains centered
approximately over the prior center, but has substantially thicker tails than the marginal prior.
This pattern suggests that deviations from the baseline model are more likely at the lower and
upper quantiles, indicating that the moment conditions for the tails are “less plausible”—in the
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sense that their quasi-posteriors are not centered at zero—than those for the median. We find it
interesting that, at least viewed through the lens of the marginal quasi-posteriors over µD,τ, the
combination of data and moments leads to updating in the direction of model misspecification.
That is, the marginal quasi-posterior over the sensitivity term for the IV moment restriction is less
concentrated around zero (correct specification) than the initial prior. We take this updating as
further evidence that a researcher should be hesitant to trust results that dogmatically maintain
correct specification in this example.

Figure 3 reports 95% highest quasi-posterior density intervals constructed using the PGMM
method under our full set of prior specifications for µτ. In addition to the PGMM intervals
obtained from simulating the full quasi-posterior, we also report intervals based on the local
limiting approximation described in Section 2.3 and Theorem 1, as well as frequentist intervals
constructed using the method of Armstrong and Kolesár (2021) (AK). The AK intervals are derived
under a local misspecification framework in which the true parameter value θτ,X is assumed to
satisfy

p
T m(θτ,X ) ∈Cτ. For comparability, we define the restriction set Cτ to match the support

of the corresponding uniform priors used in PGMM-u for a given constant c:

Cτ =
{p

T ·diag(cδτ/3)a : a ∈Rq , |a|∞ ≤ 1
}

,

where | · |∞ denotes the ℓ∞ norm. The parameter c in Figure 3 thus has a different interpretation
for the different methods. For PGMM with a Gaussian prior on µτ (PGMM-g), it determines
the standard deviations of the prior distribution. For PGMM with a uniform prior (PGMM-u),
it sets the upper and lower bounds of the uniform prior support. For the local approximation
intervals (Local Approx), it indexes the scale of the local Gaussian prior N (0,Λc /T ), whereΛc =
T c2 ·diag((δτ/3)2), consistent with the PGMM-g case. For the AK intervals, cδτ parameterizes
the local misspecification set Cτ as defined above.

As shown in Figure 3, the results for the lower and upper quantiles appear relatively sensitive
to both the value of c and the method used to obtain the interval estimate. As expected, the
AK intervals—which are designed to ensure asymptotic frequentist coverage under worst-case
local misspecification—are strictly wider than PGMM-u intervals in all cases. For these lower
and upper quantiles, we see that the AK intervals are much wider than the corresponding
PGMM intervals and, interestingly, are tracked relatively closely by the intervals obtained from
the local approximation to the quasi-posterior. An interesting feature of this example is that
the moment corresponding to plausibility term µD,τ has natural support restrictions. The full
quasi-Bayes procedure updates such that values that violate these support restrictions have very
little posterior mass. This updating does not occur in either the local approximation or the AK
intervals, which may explain some of the discrepancy between the procedures, especially for
larger values of c.

In contrast, the intervals for the median effect are notably more stable across methods. All
approaches yield similar interval estimates, and the lower bounds remain above zero even under
relatively diffuse priors on the misspecification term. This stability suggests that inference
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FIGURE 3. This figure shows the 95% intervals constructed for the treatment effect parameter,

βX ,τ, using the limiting approximation indicated by Theorem 1 (Local Approx), PGMM (PGMM-u

denotes the cases with uniform priors on µ while PGMM-g denotes the cases with Gaussian priors

on µτ) and AK (AK) for IVQR with τ= 0.15,0.50,0.85 and c = 0,0.5,0.9,1.0.
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about the median treatment effect is more robust to the specification of priors and the choice of
estimation method.

As in the previous example, we find that examining quasi-posteriors under non-dogmatic
priors on the degree of misspecification offers valuable insight into the identification and plau-
sibility of the estimated effects. Estimates of quantile effects in the upper and lower tails are
relatively sensitive to assumptions about model specification, with this sensitivity manifest-
ing as instability across methods and prior choices. In contrast, the estimated median effects
appear considerably more robust, yielding qualitatively similar results across all considered
specifications. Finally, the updating from the prior over µτ to the quasi-posterior is particularly
informative. In all cases, the quasi-posteriors place more mass away from µτ = 0 than the prior,
indicating quasi-posterior evidence against correct specification. This shift suggests that re-
searchers should be cautious about imposing the assumption of correct specification too rigidly
in this setting.

4. THEORETICAL RESULTS

This section is organized as follows. We first define notation in Subsection 4.1. Subsection
4.2 introduces a Bayesian optimal decision-theoretic motivation for the procedure. Subsection
4.3 presents a Bernstein–von Mises (BvM) theorem in a fixed-dimensional setting under local
misspecification and establishes theoretical coverage guarantees for the highest quasi-posterior
region. Subsection 4.4 extends the BvM result to the high-dimensional case. Finally, subsection
4.5 provides a frequentist justification for the coverage of the Bayesian credible set.

4.1. Notation. For a vector v = (v1, . . . , vd ) ∈Rd and q > 0, we denote |v |q = (∑d
i=1 |vi |q

)1/q
,|v |∞ =

max1≤i≤d |vi |, and ∥v∥ = |v |2. For a vector v and a conformable non-negative definite matrix A,
define ∥v∥A :=

p
v⊤Av ≥ 0. For two positive number sequences (aT ) and (bT ), we say aT ≲ bT

(resp. aT ≍ bT ) if there exists C > 0 such that aT /bT ≤ C (resp. 1/C ≤ aT /bT ≤ C ) for all large
T . We denote aT ≪ bT if aT /bT → 0 as T →∞, and write aT ≫ bT if aT /bT →∞ as T diverges.
Denote the total variation of moments (TVM) norm of κ for a real-valued measurable function
g on Θ by

∥∥g
∥∥

T V M(κ) =
∫

h∈Θ(1+∥h∥κ)|g (h)|dh for κ > 0. We use ∝ to denote “proportional
to”. We use the subscript p to denote statements with respect to the outer measure P∗ of a
given probability P. We use →d to denote convergence in distribution. We set (XT ) and (YT ) as
two sequences of random variables. Write XT = Op (YT ) if ∀ϵ > 0, there exists C > 0 such that
P∗(|XT /YT | ≤C ) > 1−ϵ for all large T . We denote XT = op (YT ) if XT /YT →p 0 as T →∞. We limit
ourselves to situations in which, given µ, observations are a random sample from a distribution
Pµ with Pµ being the conditional law of the random sample given µ; and probability statements
under P are made relative to the joint distribution of the random sample and µ, given a fixed
latent distribution Fµ over µ.
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4.2. Link to Bayes optimal decisions. Given the quasi-posterior, we can formulate optimal
decisions under the quasi-posterior by minimizing the quasi-posterior expected risk. Specifi-
cally, let ℓ(θ,µ,d) be a loss functions that depend on the parameters θ,µ and a decision d ∈D.
Policymakers may want to choose a decision d to minimize the loss ℓ

(
θ,µ,d

)
that depends on

both θ and µ. The expected loss-minimizing decision under the quasi-posterior, denoted by
sT (pT ), then takes the usual form:

sT (pT ) ∈ argmin
d∈D

∫
ℓ(θ,µ,d)pT (θ,µ)dµdθ. (6)

We note that this framework encompasses the likely leading setting where loss depends only
upon θ, where loss is ℓ(θ,d), as a special case.

These quasi-Bayes decision rules can be motivated as approximating fully Bayesian rules.
Andrews and Mikusheva (2022) show that in the weak identification cases, the quasi-posterior
based on the continuously updated GMM can be obtained as the limit of a sequence of posteriors
under proper priors, and the resulting quasi-Bayes decision rule can correspond to the pointwise
limit of the sequence of Bayes decision rules.

In the case where parameters are low-dimensional, the results of Andrews and Mikusheva
(2022) can readily be adapted to the PGMM framework. Specifically, we have that, under reg-
ularity conditions, e.g., Assumptions 1 and 3.ii), the process

p
T m̂(·)−p

T m(·) converges in
distribution to a mean-zero Gaussian process with covariance function Σ(·, ·) and mean function
satisfying m(θ(µ)) =µ on µ ∈ Γ. It then follows that we can construct a likelihood as in Andrews
and Mikusheva (2022) by properly substituting their parameter θ∗ with the pair (θ(µ),µ). As
a result, the optimal quasi-Bayesian decision rule under model misspecification retains the
desirable properties established by their analysis. We provide the supporting technical details in
Supplementary Appendix SA-2.

4.3. Gaussian quasi-posterior approximation under local misspecification. This subsection
considers a local misspecification setting in which the prior on µ is Gaussian with variance
Λ/T . We show that, under this specification, the quasi-posterior distribution is asymptotically
Gaussian and coincides with the results in Chernozhukov and Hong (2003) in the special case
whereΛ= 0—i.e., in the case that µ≡ 0. The formal result in this section, Theorem 1, provides
additional justification for the arguments presented in Section 2.

We start by presenting the technical assumptions under which we establish the Gaussian
approximation. Throughout this section, we set µ0 = 0 and define

G(θ(µ)) =
∂EPµ

[
g (Zt ,θ(µ))

]
∂θ(µ)

.

We also let θ(µ0) = θ0, Aθ(µ0) = Aθ0 , and

ΠT (θ,µ0) ∝ exp

(
−T

2
∥θ− θ̂∥2

G(θ0)⊤Aθ0G(θ0)

)
.
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Assumption 1 (Plausibility characteristic). The plausiblility characteristic µ ∈M ⊂Rq . Γ⊆M is
a set containing values for µ such that θ(µ) satisfying m(θ(µ)) =µ exists and is unique. Each θ(µ)
belongs to the interior of a compact convex subsetΘ of the Euclidean space Rk .

Assumption 1 defines the support of the plausibility characteristic and, importantly, a set Γ
within the support such that moment condition has a unique solution for each value of µ ∈ Γ. In
Assumption 5 below, we require that the prior for µ has positive mass over at least one point in Γ
which ensures the quasi-Bayes procedure is (asymptotically) relatively well-behaved.

Assumption 2 (GMM estimator). Assume m(θ) is first order differentiable in θ ∈Θ. Let

θ̂ = argmin
θ∈Θ

m̂ (θ)⊤ ÂT,θm̂ (θ)

be the GMM estimator using weighting matrix ÂT,θ. Assume θ̂ has expansion

θ̂ = θ(µ0)+ J A(θ(µ0))−1∆T
(
θ(µ0)

)+op (1/
p

T ),

where J A(θ(µ0)) =G (θ0)⊤ Aθ0G (θ0) and ∆T (θ0) =−G (θ0)⊤ Aθ0 (m̂ (θ0)−µ0).

Assumption 3 (Expansion). i) Assume J A (θ) is positive definite for all θ ∈Θ, and J A (θ) is contin-
uous in θ. Further, assume G(θ) andΩ(θ) are continuous and full rank for all θ ∈Θ, µ ∈M . ii)
Assume

∆T
(
θ(µ)

)
/
p

T =−
p

T G(θ(µ))⊤Aθ(µ)(m̂
(
θ(µ)

)−µ) →d N
(
0,Ṽ

(
θ(µ))

))
,

where

Ṽ (θ(µ)) =G(θ(µ))⊤Aθ(µ)Ω(θ(µ))Aθ(µ)G(θ(µ)).

iii)

Ω(θ(µ)) = lim
T→∞

Var
(p

T
(
m̂(θ(µ))−m(θ(µ))

))
.

Assumption 4 (Modulus of continuity and identification.). Let

rT (m,θ) =
p

T ∥(m̂(θ)−m̂ (θ0))− (Em̂(θ)−Em̂ (θ0))∥ .

For a sufficiently small positive constant δ> 0, assume

sup
θ:∥θ−θ0∥≤δ

rT (m,θ)/
(
[1∨

p
T ∥θ−θ0∥]

)
= r (δ),

and r (δ) →p 0 if δ→ 0. Further, assume

inf
θ:∥θ−θ0∥≥δ

∥ (m̂(θ)−m̂ (θ0))∥ ≥ δ.

Assumption 2 refers to the properties of the GMM estimator with a weighting matrix that
incorporates prior uncertainty as outlined in Section 2.3. It specifically imposes that the resulting
GMM estimator has a linear expansion dominated by its leading term. Assumption 3 then
addresses the asymptotic behavior of the leading term in the GMM estimator. Assumptions
2 and 3 are analogous to standard assumptions that align, for example, with Assumption 4
and conditions (ii) and (iii) in Proposition 1 in Chernozhukov and Hong (2003). Assumption
4 is a type of modulus of continuity assumption similar to condition (iv) in Proposition 1 in
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Chernozhukov and Hong (2003), which is employed to handle non-smooth criterion functions. It
requires a remainder term to be bounded within a neighborhood of θ0 and holds when moments
are sufficiently smooth. The last condition in Assumption 4 ensures that θ0 is asymptotically
well-identified.

The next assumption imposes restrictions on the prior that are sufficient for verifying approxi-
mate normality of the quasi-posterior.

Assumption 5 (Prior). π(µ,θ) =π(µ)π(θ), where π(µ) is a Gaussian prior centered at µ0 ∈ Γwith
covariance matrix Λ/T , and π(θ) is bounded and continuously differentiable around an open
ball of θ0 ∈Θ. λmax(Λ) ≪ T , and 1 ≲ λmax(Λ)/λmin(Λ) ≲ 1, where λmin(Λ) and λmax(Λ) denote
the minimum and the maximum eigenvalue of a matrixΛ respectively.

The main substantive restriction of Assumption 5 is that the prior for µ is Gaussian with
variance of the same order as sampling variation. We further impose that the prior variance is
full rank and that, a priori, θ and µ are independent. The requirement thatΛ be of full rank can
be relaxed.14

We now present the first main theorem, which shows that the quasi-posterior density pT (θ)
converges in the TVM norm to a Gaussian density. With slight abuse of notation, we denote
p̄T (m̂(θ)) = pT (θ) and obtain p̄T

(
m̂(θ̂)−G(θ0)(θ̂−θ)

)
by replacing m̂(θ) in p̄T (m̂(θ)) with m̂(θ̂)−

G(θ0)(θ̂−θ).

Theorem 1. (Convergence in TVM norm). Under Assumptions 1−5, for any 0 ≤ κ<∞,∥∥p̄T
(
m̂(θ̂)−G(θ0)(θ̂−θ)

)−ΠT (θ,µ0)
∥∥

T V M(κ)

=
∫
θ∈Θ

(
1+∥θ−θ0∥κ

)∣∣ΠT (θ,µ0)− p̄T
(
m̂(θ̂)−G(θ0)(θ̂−θ)

)∣∣dθ→p 0, and∥∥pT (θ)−ΠT (θ,µ0)
∥∥

T V M(κ) =
∫
θ∈Θ

(
1+∥θ−θ0∥κ

)∣∣pT (θ)−ΠT (θ,µ0)
∣∣dθ→p 0.

Proof. See Appendix 7.1. □

Theorem 1 demonstrates that pT (θ) can be asymptotically approximated by a Gaussian density
functionΠT (θ,µ0) under a sequence of Gaussian priors over misspecification that concentrate
at the same rate as sampling error. Further, the theorem confirms the expected result that pT (θ)
concentrates in a 1/

p
T neighborhood of θ0 under local misspecification. This result differs from

the related approximation result in Chernozhukov and Hong (2003) in that the quasi-posterior
depends on the prior for the plausibility characteristic, even asymptotically. We do note that the
approximation result reproduces the result from Chernozhukov and Hong (2003) under µ0 = 0

14For example, let B ∈ Rq×q̃ , q̃ < q,, and let Λx ∈ Rq̃×q̃ be full rank. Consider the prior for µ generated from

µ = B x, x ∼ N
(
0, T −1Λx

)
. Following the same arguments as used to establish Theorem 1, we can establish the

quasi-posterior density pT (θ) is, for large T , approximately Gaussian with covariance matrix Aθ = Ω(θ)−1 −
Ω(θ)−1 B

(
Λ−1

x +B⊤Ω(θ)−1B
)−1 B⊤Ω(θ)−1.
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andΛ→ 0—i.e., when the prior over misspecification concentrates more quickly than sampling
error.

We note that Theorem 1, along with Theorems 2-4 presented below, could be established
without requiring the data stream {Zt }T

t=1 to be i.i.d. Rather, we could work with moments
defined as mT (θ(µ)) = T −1 ∑T

t=1EPµ,t [g (Zt ,θ(µ))] =µ where Pµ,t is the marginal distribution for
Zt . Within this structure, results could be established under suitable restrictions on dependence
and heterogeneity. We do not pursue this direction formally to avoid further complicating
notation.

4.4. General quasi-posterior approximation results. This section discusses an extension of
Theorem 1 by allowing relatively general choice of prior for µ. The key result is that, as in the
previous section, the prior for µ matters even in the limit. However, under a general prior
structure, we do not obtain a limiting Gaussian approximation. Rather, we have that, conditional
on µ, the limiting approximation is Gaussian. Thus, the limiting approximation to the posterior
is a Gaussian mixture where mixture weights depend heavily on the prior. We establish the
formal results under sequences that allow the dimensions k and q to grow with the sample size
T , which offers a technical extension of some results even in the case where a dogmatic prior is
placed over µ.

To accommodate a broader family of weighting matrices, we allow the GMM-type criterion
that serves to define our quasi-posterior, QT (θ,µ), to be formed with any positive-definite weight
matrix ŴT (θ). That is, we now consider

QT (θ,µ) =−T
(
m̂(θ)−µ)⊤ŴT (θ)

(
m̂(θ)−µ)

,

where setting ŴT (θ) = Ω̂T (θ)−1 corresponds to the leading case discussed in previous sections.
Within this more general formulation, we use W (θ) to denote the population analog of ŴT (θ) in
the same manner thatΩ(θ) serves as the population counterpart of Ω̂T (θ).

In stating our formal results in this section, we make use of additional notation. Let h(θ,µ) =
G(θ(µ))(θ−θ(µ)), for µ ∈ Γ, and h(θ,µ) =G(θ(µ))(θ−θ(ν(µ)))), for µ ̸∈ Γ, where we let ν(µ) ∈ Γ
be the closest point of µ for µ ∈M according to ∥.∥. Let the ε/

p
T expansion of {(θ(µ),µ) :µ ∈ Γ}

be defined within Bε =
{
(θ,µ) :

p
T ∥h(θ,µ)∥ ≤ ε,

p
T ∥µ−ν(µ)∥ ≤ log(T )ε,θ ∈Θ,µ ∈M

}
with ε≍p

k logT . Bε is thus a ε/
p

T -set containing elements (θ,µ) closely around the plausible pairs
(θ(µ),µ) with µ ∈ Γ. Let

VT (h(.),θ,µ) =2T h⊤W (θ(µ))(m̂(θ(µ))−µ)+T h⊤W (θ(µ))h +C (µ),

where C (µ) =−2log(π(θ(µ)))+T (m̂(θ(µ))−µ))⊤W (θ(µ))(m̂(θ(µ)−µ) and we abbreviate h(θ,µ)
as h. For µ ∈M /Γ, we define VT (h(.),θ,µ) by using θ(ν(µ)) in place of θ(µ).

We now state sufficient conditions for establishing our limiting approximation to the quasi-
posterior.
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Assumption 6 (Identification, smoothness, and tails). Assume the following: (i) m(θ) is first order
differentiable. (ii) For any θ ∈Θ, G(θ) and W (θ) have singular values bounded from below and

above. (iii) There exists a positive constant C > 0, sup1≤ j≤q,(θ,µ)∈Bε E
[
∥e⊤

j (g (Zt ,θ)−µ)∥2
]
<C . (iv)

For θ,θ′ ∈Θ, µ ∈ Γ, ∥G(θ)−G(θ′)∥≲ ∥θ−θ′∥,∥W (θ)−W (θ′)∥≲ ∥θ−θ′∥, and ∥ŴT (θ)−W (θ)∥ =
op (1).

Assumption 6 imposes regularity conditions that are sufficient for good behavior of the limiting
criterion function. Importantly, these conditions ensure that, at fixed values of µ, θ is strongly
identified through the restrictions on G(θ); see, e.g., Hansen et al. (2010).

The next assumption restricts priors, importantly requiring that θ and µ are a priori inde-
pendent and that the marginal priors place positive mass uniformly over the corresponding
parameter space.

Assumption 7 (Prior). Let M be an interior of a compact convex subset of Rq . Assume the prior
density π(θ,µ) =π(θ)π(µ) with π(µ) > 0 for µ ∈M and π(θ) > 0 for θ ∈Θ. Assume π(θ) is bounded
and continuously differentiable onΘ.

Before stating the next assumption, define

RT (θ,µ) = 1

2
(QT (θ,µ)+VT (h(.),θ,µ))+ log(π(θ)).

Assumption 8 (Empirical process). There exists ε≍p
k logT such that the following properties

hold with probability tending to 1:

supθ,µ∈Bε T |RT (θ,µ)|
(∥pT h(θ,µ)∥2 +k(logT )2)

=Op

(p
k(logT )2

p
T

+ qp
kT

)

with (logT )((logT )2k)(κ∨2)+1

T → 0 and k(logT )4q2

T → 0, and there exists a positive constant 1
2 < C0 ≤ 1

such that for all θ,µ satifying
p

T h(θ,µ) ≥ ϵ,

T RT (θ,µ) ≤−C0

p
T ∥θ−θ(ν(µ))∥JW (θ(µ))ε+

C0ε
2

2
+

T ∥θ−θ(ν(µ))∥2
JW (θ(ν(µ)))

2
(7)

with JW (θ(µ)) =G⊤(θ(µ))W (θ(µ))G(θ(µ).

The condition

sup
θ,µ∈Bε

T |RT (θ,µ)|
∥pT h(θ,µ)∥2 +k(logT )2

→p 0

arises from needing to control a modulus of continuity. It ensures the oscillatory behavior of
the empirical process RT (θ,µ) is mild. While the condition is high level, Lemma 4 shows that
this condition is satisfied with differentiable moments. Assumption 7 effectively imposes an
identification requirement for large values of θ and a smoothness condition for smaller values
of θ on the term sup(θ,µ)∈B c

ε
T RT (θ,µ). The assumption resembles the finite-sample bound in
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Lemma A.16 of Spokoiny and Panov (2019), and it enables the derivation of a tail bound outside
the ball Bε using a Gaussian integral argument.

Now, define NT (θ,µ) = exp
{− 1

2 [VT (h(.),θ,µ)]
}
π(µ)∫

µ∈M

∫
θ∈Θ exp

{− 1
2 [VT (h(.),θ,µ)]

}
π(µ)dθdµ

. Under the stated assumptions, we

obtain the following Bernstein-von Mises-type result establishing that the quasi-posterior is
asympotically approximated by NT (θ,µ).

Theorem 2. Under Assumptions 1, 6-8, we have,∥∥pT (θ,µ)−NT (θ,µ)
∥∥

T V M(κ) ≡
∫
µ∈M

∫
θ∈Θ

(
1+∥θ−θ(ν(µ))∥κ)∣∣pT (θ,µ)−NT (θ,µ)

∣∣dθdµ→p 0.

(8)

Proof. See Appendix 7.2 □

The above theorem indicates that, conditional on fixed values of µ, the quasi-posterior dis-
tribution of θ can be well approximated by a Gaussian distribution, thus facilitating practical
inference via conditional sampling, as demonstrated in Theorems 3-4. In contrast to Theorem
1, Theorem 2 relaxes the prior specification on µ by not imposing a Gaussian prior, thereby
extending the applicability of the result. While the joint limiting distribution NT (θ,µ) is not
Gaussian in general, it becomes Gaussian when conditioning on µ. This insight has practical
implications: one may select a representative set of µ values, compute the corresponding con-
ditional quasi-posterior distributions of θ, and aggregate the highest quasi-posterior density
regions. This approach mirrors the strategy employed by Conley et al. (2012) for constructing
robust inference under partial identification.

While quasi-Bayes posteriors can be motivated as providing approximate Bayesian uncertainty
quantification, we also note that we can use posterior intervals to provide directly to provide
approximate frequentist coverage within a two-stage sampling regime.

Specifically, let PRT (α) denote the (1−α)% (0 <α< 1) highest quasi-posterior density region
for θ obtained from the quasi-posterior pT (θ).15 Lemma 1 shows that PRT (α) asymptotically
provides valid weighted average frequentist coverage in large samples if we envision a world
where nature draws µ from the prior π(µ), in which case π(µ) coincides with the fixed latent
distribution Fµ in the data generating mechanism.

Lemma 1. (Weighted average coverage rate of PRT (α)) Assume that π(µ) coincides with Fµ and
that Assumptions 1, 6-8 hold. Let ∂Fµ(u)/∂µ= fµ(u) and fix α ∈ (0,1). Assume that W (θ(µ))−1 =
Ω(θ(µ)) and the distribution of m̂(θ(µ))−µ under Pµ can be well approximated by a Gaussian
distribution with mean zero and covariance matrixΩ(θ(µ)) as T →∞. Then PRT (α) satisfies the
following π-weighted average coverage rate, which also corresponds to the coverage rate under

15For a positive constant c and density pT (θ), PRT (α) = {θ ∈Θ : pT (θ) > c} such that
∫

PRT (α) pT (θ)dθ = 1−α.
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P, in large samples:∫
µ
Pµ(θ(µ) ∈ PRT (α))π(µ)dµ=P(θ(µ) ∈ PRT (α)) ≈ 1−α.

Proof. See Appendix 7.3. □

4.5. Using quasi-posteriors to provide frequentist inference under support restrictions. In
this section, we provide an approach to obtain regions for θ that deliver valid frequentist coverage
guarantees under support restrictions over µ. The regions are constructed by taking unions
of quasi-posterior credible regions for fixed values of µ. Frequentist validity of this approach
relies on properties of quasi-posterior intervals obtained from the posterior distribution pT (θ,µ)
established in Theorems 3-4 in this section.

In the following, we suppose that one is interested in a continuously differentiable function
η(θ) :Rk →R. To state our results, we define the following quantities at fixed, given values of µ:

JΩ,W
(
θ(µ)

)=G(θ(µ))⊤W (θ(µ))Ω(θ(µ))W (θ(µ))G(θ(µ)),

UT (µ) = J−1/2
W

(
θ(µ)

)
∆T,W

(
θ(µ)

)
,

∆T,W
(
θ(µ)

)=G(θ(µ))⊤W (θ(µ))(m̂(θ(µ))−µ).

We first introduce a high level assumption for an estimator of θ(µ) which is defined at a
fixed value of µ. While we focus on quasi-Bayes estimators in this paper, we note that the
estimator in this section can be relatively generic. For example, it could be a LTE estimator
conditional on a value of µ— θ̂(µ) = argmind∈D

∫
θ ℓ(θ,d)pT (θ,µ)/pT (µ)dθ— or a CUE extreme

estimator—θ̂(µ) = argminθ∈ΘQT (θ,µ)—among many others

Assumption 9. (Asymptotic normality) For a fixed µ ∈ Γ, θ̂(µ) admits the following linearization:

∥(θ̂(µ)−θ(µ))−UT (µ)∥ = op

(
kp
T

)
,

and p
Tσ−1

η,µ(∂η(θ(µ))/∂θ)⊤(θ̂(µ)−θ(µ)) →d N (0,1),

where σ2
η,µ = (∂η(θ(µ))/∂θ)⊤ JW (θ(µ))−1 JΩ,W

(
θ(µ)

)
JW (θ(µ))−1(∂η(θ(µ))/∂θ).

The expansion assumed in Assumption 9 is readily justified for GMM extremum estimators;
see, e.g., Corollary SA-1. The proof of Theorem 2 implies that, for any µ ∈ Γ, the CUE extremum
estimator admits the same first-order linearization as the LTE with symmetric loss functions
analyzed in Chernozhukov and Hong (2003), when considering the quasi-posterior conditional
on µ; see also Theorem 2 of Chernozhukov and Hong (2003) for the fixed-k case. When the
weight matrix satisfies the generalized information equality (Equation 9), Assumption 9 further
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implies that the asymptotic variance of the leading term (∂η(θ(µ))/∂θ)⊤UT (µ) in the expansion
of η(θ̂(µ))−η(θ(µ)) is given by

T −1
(
∂η(θ(µ))

∂θ

)⊤
JΩ

(
θ(µ)

)−1
(
∂η(θ(µ))

∂θ

)
.

We now state two theorems that make use of different features of quasi-posteriors obtained
conditional on fixed values of µ to produce interval estimates for η(θ). The first main result in
each theorem verifies that the resulting interval estimates have asymptotically correct frequentist
coverage under the assumption that the fixed value of µ corresponds to the value of µ defining
the conditional distribution from which data were realized. As a consequence, we can obtain
frequentist confidence regions with correct coverage under the prior support condition that
µ belongs to a known set M without requiring a completely specified prior by taking a union
of confidence intervals produced at each µ ∈ M . This approach is analogous to the union of
confidence intervals approach in Conley et al. (2012) and the approach outlined in Remark 3.3 of
Armstrong and Kolesár (2021).

Theorem 3. (Frequentist properties of posterior quantiles) Assume that η(θ) has bounded
derivatives such that for a positive constant c, ∥(∂η(θ(µ))/∂θ)∥ ≤ c, and

lim
T→∞

JΩ
(
θ(µ)

)
JΩ,W

(
θ(µ)

)−1 = Ik×k , (9)

where Ik×k denotes the k ×k identity matrix. Let cη,T (α,µ) be the α conditional quantile corre-
sponding to the posterior density pT (θ,µ) given µ such that {infx∈R : Fη,T (x,µ) ≥α}, where the
conditional quasi-posterior distribution function, Fη,T (x,µ), for each µ ∈ Γ, is defined as

Fη,T (x,µ) =
∫
θ∈Θ:η(θ)≤x

pT (θ,µ)/pT (µ)dθ.

Under Assumptions 1, 6-9, for any α ∈ (0,1),

cη,T (α,µ)−η(θ̂(µ))−qα

√(
∂η

(
θ(µ)

)
/∂θ

)⊤ JΩ
(
θ(µ)

)−1 (
∂η

(
θ(µ)

)
/∂θ

)
p

T
= op

(
kp
T

)
.

Let CI(µ) = [cη,T (α/2,µ),cη,T (1−α/2,µ)], then

lim
T→∞

P∗
µ

{
η(θ(µ)) ∈ CI(µ)

}= 1−α, (10)

and

lim
T→∞

P∗ {
η(θ(µ)) ∈∪µ′∈M CI(µ′),∀µ ∈ Γ}≥ 1−α. (11)

Proof. See Appendix 7.4. □

Theorem 3 verifies that quantiles obtained from the limiting conditional posterior density
NT (θ,µ)/NT (µ) provide a valid frequentist approximation to the distribution of

p
T (η(θ̂(µ))−

η(θ(µ))). This coverage result relies on the generalized information equality, (9), and is con-
sistent with findings for point-identified scalar parameters and partially identified models, as
documented in Chernozhukov and Hong (2003) and Chen et al. (2018).
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The first main result of Theorem 3, (10), verifies that posterior quantiles obtained from the
quasi-posterior constructed conditional on fixed value of µ have asymptotically correct coverage
under the corresponding conditional measure. (11), showing valid coverage of the union of
intervals obtained under a support restriction, then immediately follows under the assumption
that the value of µ under which the data were generated belongs to the specified support M .

The results of Theorem 3 critically depend on choosing ŴT (θ(µ)) such that (9) holds. Moti-
vated by Theorem 4 of Chernozhukov and Hong (2003), the next result proposes an alternative
procedure for using features of the quasi-posterior to construct intervals with frequentist cover-
age guarantees in settings where ŴT (θ(µ)) is specified in such a way that (9) does not hold.

Theorem 4. (Frequentist properties of intervals based on Gaussian approximations) Suppose
Assumptions 1, 6-9 hold and that η(θ) has bounded derivatives. Let c be a small enough positive
constant such that

∫
1{pT (µ)≤c} fµ(µ)dµ= op (1). Let

Ĵ−1
T

(
θ̂(µ)

)= ∫
Θ

T (θ− θ̂(µ))(θ− θ̂(µ))⊤
[

pT (θ,µ)

pT (µ)

]
dθ1(µ ∈ {µ ∈M : pT (µ) > c}),

and assume that there exists an estimator J̃Ω,W
(
θ(µ)

)
such that

∥ J̃Ω,W
(
θ(µ)

)
JΩ,W

(
θ(µ)

)−1 − Iq×q∥→p 0.

We then have

∥ ĴT
(
θ̂(µ)

)
J−1

W

(
θ(µ)

)− Iq×q∥→p 0

with Iq×q being the q ×q identity matrix. Let

c̃η,T (α,µ)
def= η(θ̂(µ))+qα ·

√(
∂η

(
θ̂(µ)

)
/∂θ

)⊤
ĴT

(
θ̂(µ)

)−1
J̃Ω,W

(
θ(µ)

)
ĴT

(
θ̂(µ)

)−1 (
∂η

(
θ̂(µ)

)
/∂θ

)
p

T
,

and C̃I(µ) = [c̃η,T (α/2,µ), c̃η,T (1−α/2,µ)] for µ ∈ Γ, then we have

lim
T→∞

P∗
µ

{
η(θ(µ)) ∈ C̃I(µ)

}= 1−α, (12)

and

lim
T→∞

P∗ {
η(θ(µ)) ∈∪µ′∈ΓC̃I(µ′),∀µ ∈ Γ}≥ 1−α. (13)

Proof. See Appendix 7.5. □

Theorem 4 verifies that intervals constructed making use of a normal approximation con-
structed conditional on fixed value of µ also have asymptotically correct coverage under the

corresponding conditional measure. In practice, ĴT
(
θ̂(µ)

)−1
in Theorem 4 can be computed by

multiplying the variance-covariance matrix of the MCMC sequence S = (
θ(1),θ(2), . . . ,θ(B)

)
, where

B denotes the simulation sample size, by T in settings where MCMC is used to approximate the
quasi-posterior at a fixed value of µ. As with Theorem 3, it is then immediate that a union of
intervals obtained using this approach under a support restriction on µ delivers valid frequentist
inference.
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Note that we state these results for completeness and to verify that the quasi-Bayes approach
can be used to deliver frequentist valid inference under only support restrictions as in Armstrong
and Kolesár (2021). However, our chief interest is in using quasi-Bayes approaches in settings
where informative prior information is of use. If valid frequentist inference under a support
restriction is the goal, it is not clear there is much advantage to adopting the framework presented
in this paper.

5. CONCLUSION

In this paper, we introduce Plausible GMM (PGMM), a quasi-Bayesian framework for inference
in moment condition models that allows for potential misspecification. By placing a proper
prior over the degree of misspecification, PGMM provides a flexible and transparent way to
incorporate researchers’ subjective beliefs about the plausibility of structural assumptions. This
approach extends classical GMM by acknowledging that moment conditions are often credible
but not exact, enabling more credible inference in the presence of model uncertainty.

Our theoretical contributions include posterior concentration results, new Bernstein-von
Mises type approximations under partial identification, and decision-theoretic guarantees for
quasi-Bayes procedures allowing diverging dimensions of parameters and moments. While not
our main goal, we also provide an approach and results for using quasi-posteriors to obtain
asymptotically valid frequentist inferential statements under support restrictions for the degree
of misspecification.

Empirical applications illustrate the use of PGMM. In these examples, we see that PGMM
intervals remain informative while allowing for subjective, but empirically motivated deviations
away from dogmatic identifying assumptions. PGMM may thus offer a useful tool for applied
researchers who wish to retain the structure of moment-based models while explicitly allowing
for uncertainty about moments being perfectly satisfied.
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6. APPENDIX: ADDITIONAL FIGURES

FIGURE 4. Upper panel (a): Linear IV (2) marginal (quasi-)posterior(s) for βX and its marginal

prior (red dotted curve); lower panel (b): Linear IV(2) 95% HPD intervals for βX resulting from the

PGMM approach along various priors for µ, i.e., N (0,cΣTΩdΣ
⊤
T ) for various values of c.



34

FIGURE 5. Marginal (quasi-)posteriors and priors for selected µ’s (entries corresponding to

moments constructed with IVs) in Linear IV(1) and Linear IV(2).
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FIGURE 6. PGMM marginal quasi-posteriors (solid black curves) of βX ,τ for the Gaussian prior

over µ across various values of τ and c = 0.5. The red dashed curves represent the marginal prior

density curves for these parameters.
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FIGURE 7. PGMM marginal quasi-posteriors (solid black curves) of βX ,τ for the Gaussian prior

over µ across various values of τ and c = 0.9. The red dashed curves represent the marginal prior

density curves for these parameters.
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FIGURE 8. PGMM marginal quasi-posteriors (solid black curves) of βX ,τ for the Gaussian prior

over µ across various values of τ and c = 1. The red dashed curves represent the marginal prior

density curves for these parameters.
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FIGURE 9. PGMM marginal quasi-posteriors (solid black curves) of βX ,τ for the uniform prior

over µ across various values of τ and c = 0.5. The red dashed curves represent the marginal prior

density curves for these parameters.
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FIGURE 10. PGMM marginal quasi-posteriors (solid black curves) of βX ,τ for the uniform prior

over µ across various values of τ and c = 0.9. The red dashed curves represent the marginal prior

density curves for these parameters.
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FIGURE 11. PGMM marginal quasi-posteriors (solid black curves) of βX ,τ for the uniform prior

over µ across various values of τ and c = 1. The red dashed curves represent the marginal prior

density curves for these parameters.
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7. APPENDIX: PROOFS

Notation We denote the max norm by |A|max = maxi , j |ai , j |, the spectral norm by ∥A∥ =√
λmax(AT A), and the Frobenious norm by ∥A∥F . The trace of an n×n square matrix A is defined

as tr (A) =∑
i ai ,i and its determinant is denoted by det(A). For positive semi-definite matrices

A,B , we write A ≥ B if A −B is positive semi-definite. “w.p.a.1.” to denote “with probability
approaching one”. For s > 0 and a random vector X , we say X ∈L s if ∥X ∥s = [E(|X |s)]1/s <∞.

7.1. Proof of Theorem 1.

pT (θ,µ) ∝π(θ)exp(−T

2
∥m̂(θ)−µ∥2

Ω̂T (θ)−1 )exp(−(Tµ⊤Λ−1µ)/2).

We shall now prove that it is indeed true that,

pT (θ) ∝ exp(−T

2
∥m̂(θ)−µ0∥2

ÂT,θ
).

Without loss of generality, we prove for µ0 = 0. Let µ∼ N (µ0,T −1Λ). Let

C 2
w = T (Λ−1 + Ω̂T (θ)−1),

CwCg = T Ω̂T (θ)−1m̂(θ).

Then we have the following,

pT (θ,µ) ∝π(θ)exp(−1

2
∥m̂(θ)−µ∥2

T Ω̂T (θ)−1 −∥µ∥2
TΛ−1 /2)

∝π(θ)exp(−1

2
∥m̂(θ)∥2

T Ω̂T (θ)−1 +Tµ⊤Ω̂T (θ)−1m̂(θ)−∥µ∥2
T Ω̂T (θ)−1 /2−∥µ∥TΛ−1 /2)

∝π(θ)exp(−1

2
(∥m̂(θ)∥2

T Ω̂T (θ)−1 )exp(+Tµ⊤Ω̂T (θ)−1m̂(θ)−∥µ∥2
(Λ−1+Ω̂T (θ)−1)T

/2)

∝π(θ)exp(−1

2
(∥m̂(θ)∥2

T Ω̂T (θ)−1 )exp(+Tµ⊤Ω̂T (θ)−1m̂(θ)−∥µ∥2
(Λ−1+Ω̂T (θ)−1)T

/2)

∝π(θ)exp(−1

2
(∥m̂(θ)∥2

T Ω̂T (θ)−1 )exp(+µ⊤CwCg −∥µ∥2
C 2

w
/2−C⊤

g Cg /2)exp(+C⊤
g Cg /2)

∝π(θ)exp(−1

2
(∥m̂(θ)∥2

T Ω̂T (θ)−1 )exp(−(Cwµ−Cg )⊤(Cwµ−Cg )/2)exp(C⊤
g Cg /2)

∝π(θ)exp(−1

2
(∥m̂(θ)∥2

T Ω̂T (θ)−1 )exp(−(µ−C−1
w Cg )⊤C 2

w (µ−C−1
w Cg )/2)exp(C⊤

g Cg /2).

Plugging in the definition of Cg , we have that∫
pT (θ,µ)dµ∝π(θ)exp(−1

2
(∥m̂(θ)∥2

T Ω̂T (θ)−1 ))exp(T 2m̂(θ)⊤Ω̂T (θ)−1C−2
w Ω̂T (θ)−1m̂(θ)/2)

∗
√

2πdet(C 2
w )

∝π(θ)exp(−1

2
(∥m̂(θ)∥2

T (Ω̂T (θ)−1−Ω̂T (θ)−1T C−2
w Ω̂T (θ)−1)

)).
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Then, the results directly follow the proof of Theorem 1 in Chernozhukov and Hong (2003)
for fixed Λ. In the scenario where c ≪Λ≪ T (c is a positive constant), we need to replace M
in the proof of Theorem 1 in Chernozhukov and Hong (2003) by a slowly increasing MT , e.g.,

MT = M∥Aθ(µ0)∥− 1
2 , and the remaining proofs proceed with a similar rationale.

7.2. Proof of Theorems 2 and other intermediate results. It shall be noted that Assumption 3
imply that

tr
(
G(θ)⊤W (θ)G(θ)

)
≲ k,

and

tr(TG(θ)⊤(m̂(θ)−µ)⊤W (θ)(m̂(θ)−µ)G(θ)) =Op (k),

0 <λmin(W (θ)G(θ)G(θ)⊤W (θ)) <λmax(W (θ)G(θ)G(θ)⊤W (θ))≲ 1.

Define

Cm,µ =G⊤(θ(µ))W (θ(µ))(m̂(θ(µ))−µ),

Cw,µ =G⊤(θ(µ))W (θ(µ))G(θ(µ))

and

2Cµ =−2logπ(µ)−2log(π(θ(µ)))+T (m̂(θ(µ))−µ)⊤W (θ(µ))(m̂(θ(µ))−µ).

Then let us analyse VT (h(.),θ,µ),

VT (h(.),θ,µ)−2logπ(µ)

= 2T [(θ−θ(µ))⊤G⊤(θ(µ))]W (θ(µ))(m̂(θ(µ))−µ)

+T [(θ−θ(µ))⊤G⊤(θ(µ))]W (θ(µ))[G(θ(µ))(θ−θ(µ))]

−2logπ(µ)−2log(π(θ(µ)))+T (m̂(θ(µ))−µ)⊤W (θ(µ))(m̂(θ(µ))−µ)

= 2T (θ−θ(µ))⊤Cm,µ+T (θ−θ(µ))⊤Cw,µ(θ−θ(µ))+2Cµ.

We know that conditioning on µ, exp(−VT (h(.),θ,µ)−2logπ(µ)
2 ) is proportional to the log-likelihood

of the density function of N (−C−1
w,µCm,µ, (TCw,µ)−1).

By Assumption 6,

tr (Cm,µC⊤
m,µ) = tr ((m̂(θ(µ))−µ)⊤W (θ(µ))G(θ(µ))G⊤(θ(µ))W (θ(µ))(m̂(θ(µ))−µ))

=Op (tr (G⊤(θ(µ))W (θ(µ))E[(m̂(θ(µ))−µ)(m̂(θ(µ))−µ)⊤]W (θ(µ))G(θ(µ))))

=Op (
k

T
).

By Assumption 6, and λmax(G(θ(µ))G⊤(θ(µ))) =λmax(G⊤(θ(µ))G(θ(µ)))≲ 1.

To derive the conclusion, note that
∫
M

∫
Θ

(
1+∥θ−θ(ν(µ))∥κ)∣∣pT (θ,µ)−NT (θ,µ)

∣∣dθdµ may
divide into the following parts:∫

M

∫
Θ

(
1+∥θ−θ(ν(µ))∥κ)∣∣pT (θ,µ)−NT (θ,µ)

∣∣dθdµ=R1,T +R2,T .
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where we denote R1,T = ∫
Bε

(
1+∥θ−θ(ν(µ))∥κ)∣∣pT (θ,µ)−NT (θ,µ)

∣∣dθdµ and R2,T =∫
B c
ε

(
1+∥θ−θ(ν(µ))∥κ)∣∣pT (θ,µ)−NT (θ,µ)

∣∣dθdµ.

To look at R1,T , we first look at
∫

Bε

(
1+∥θ−θ(ν(µ))∥κ)NT (θ,µ)

∣∣pT (θ,µ)/NT (θ,µ)−1
∣∣dθdµ.

Let the integral ratio be

c∗ =
∫
Ξexp(−VT (h(.),θ,µ)/2+ log(π(µ)))dθdµ∫

Ξexp( 1
2QT (θ,µ)+ logπ(µ,θ))dθdµ

.

By Lemma 3, under Assumptions 7-8, we have |c∗|≲ 1.

We define NT (θ|µ) ∝ NT (θ,µ)∫
ΘNT (θ,µ)dθ

and NT (µ) ∝ ∫
ΘNT (θ,µ)dθ for µ ∈M . It is not hard to see

that condition on µ, the density function NT (θ|µ) is proportional to a density function of a
multivariate Gaussian random variable with mean −C−1

w,µCm,µ and variance T −1C−1
w,µ, following

the fact about Gaussian Integral such that, with x ∈Rn , we have∫ ∞

−∞
exp

(
−1

2
x⊤Cw,µx +Cm,µ

⊤x
)

d x1d x2 . . .d xn = (2π)n/2

det(Cw,µ)1/2
exp

[
1

2
Cm,µ

⊤Cw,µ
−1Cm,µ

]
.

And we define ENT (θ|µ)(.) as taking expectation under the measure corresponding to the den-
sity function NT (θ|µ). We denote Eγ(.) as taking expectation under a standard multivariate
Gaussian distribution with an identity variance covariance matrix. And Pγ(.) is the probability
corresponding to γ.

Note that, pT (θ,µ)
NT (θ,µ) =

exp
( 1

2 QT (θ,µ)+VT (h(.),θ,µ)/2+log(π(θ))
)

c∗ = exp(RT (θ,µ))
c∗ , let a(θ,µ) = exp(RT (θ,µ))/c∗−

1, and then for a positive constant δ> 0,

R1,T =
∫

Bε

(
1+∥θ−θ(ν(µ))∥κ)NT (θ,µ)

∣∣∣∣exp(RT (θ,µ))

c∗
−1

∣∣∣∣dθdµ

=
∫

Bε

(
1+∥θ−θ(ν(µ))∥κ)NT (θ,µ)

∣∣a(θ,µ)
∣∣dθdµ

=
∫

Bε

(
1+∥θ−θ(ν(µ))∥κ)NT (θ|µ)

∣∣a(θ,µ)
∣∣dθNT (µ)dµ

≤δ(logT )3
p

k3

p
T

∫
Bε

NT (θ|µ)
∣∣(1+∥θ−θ(ν(µ))∥κ)∣∣dθNT (µ)dµ

≤δ(logT )3
p

k3

p
T∫

Γϵ

Eγ

(∥∥∥pT
−1

C−1/2
w,µ (γ−C−1/2

w,µ Cm,µ)
∥∥∥κ1(

∥∥∥pT
−1

C−1/2
w,µ (γ−C−1/2

w,µ Cm,µ)
∥∥∥≤ ε/

p
T )

∣∣∣µ)
NT (µ)dµ

≲
(logT )3δ(

p
k)κ+3

p
T

,

where we let Γϵ =
{
µ ∈M : ∥µ−ν(µ)∥ ≤ log(T )ϵ

}
and the first inequality is due to Lemma 3,

Assumptions 8, and the third inequality is due to Lemma 2 and the property of Gaussian density.
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Denote PNT (θ|µ)(·) as the conditional probability measure function of θ−θ(ν(µ)) conditioning on
a fixed value of µ corresponding to the density NT (θ|µ).

For R1,T , we essentially only need to look at the region B̄ c
ε = {(θ,µ) :

p
T ∥h(θ,µ)∥ > ε,θ ∈Θ,µ ∈

M } as the integration over the remaining region is an op (1) term (see also, e.g., Theorem 5
from Andrews and Mikusheva (2022)). On B̄ c

ε , Assumption 8 implies that
∣∣exp(RT (θ,µ))/c∗−1

∣∣≤
exp(−C0∥θ−θ(ν(µ))∥Cw,µε

p
T +C0ε

2/2+T ∥θ−θ(ν(µ))∥2
Cw,µ

/2)/c∗+1.

We define B c
ε,θ = {θ : ∥(θ − θ(v(µ)))∥ > p

T
−1∥G(θ(v(µ)))∥−1ε,µ ∈ M }, so that in this

set ∥C−1/2
w,µ (

p
T

−1
γ − C−1/2

w,µ Cm,µ)∥ > c
p

T
−1p

k logT for a positive c. Additionally, we

define Bγ = {γ ∈ Rk : ∥γ∥ > p
T

−1
(
c
√

k logT −∥C−1/2
w,µ Cm,µ∥

)
∥C−1/2

w,µ

p
T

−1∥−1}, and let

BT (θ − θ(ν(µ)) = −C0∥θ − θ(ν(µ))∥εpT + C0ε
2/2 + T ∥θ − θ(ν(µ))∥2

Cw,µ
/2. Thus it implies

that γ satisfying ∥C−1/2
w,µ (

p
T

−1
γ−C−1/2

w,µ Cm,µ)∥ > c
p

T
−1p

k logT is contained in the ball Bγ.

To handle R2,T , first we define a R22,T term as,

R22,T =
∫

B̄ c
ε

exp(BT (θ−θ(ν(µ)))NT (θ|µ)
∣∣(1+∥θ−θ(ν(µ))∥κ)∣∣dθNT (µ)dµ

≲
∫
M
ENT (θ|µ)[exp(BT (θ−θ(ν(µ)))

(
1+∥θ−θ(ν(µ))∥κ)1(θ ∈ B c

ε,θ)]NT (µ)dµ

≲
∫
M

∥C−1/2
w,µ

p
T

−1∥Eγ[exp(BT (C−1/2
w,µ [

p
T

−1
γ−C−1/2

w,µ Cm,µ])(
1+∥C−1/2

w,µ (
p

T
−1
γ−C−1/2

w,µ Cm,µ)∥κ
)

1(γ ∈ Bγ)]NT (µ)dµ

≤
∫
M

∥C−1/2
w,µ

p
T

−1∥Eγ[exp(BT (C−1/2
w,µ

p
T

−1
γ)+∥C−1

w,µCm,µ∥C0ε
p

T /2

+T ∥C−1
w,µCm,µ∥2

Cw,µ
/2)

(
1+∥C−1/2

w,µ

p
T

−1
γ∥κ+∥C−1

w,µCm,µ∥κ
)
]1(γ ∈ Bγ)NT (µ)dµ

≤C sup
µ∈M

∥C−1/2
w,µ

p
T

−1∥
p

k exp(−(ε∨
p

k)),

where the bound is by lemma 10 as Gaussian in integral lemma and implied by our Assumptions
6 and 8 .
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R2,T =
∫

B̄ c
ε

(
1+∥θ−θ(ν(µ))∥κ)NT (θ,µ)

∣∣exp(RT (θ,µ))/c∗−1
∣∣dθdµ

≲
∫

B̄ c
ε

NT (θ|µ)
∣∣(1+∥θ−θ(ν(µ))∥κ)∣∣dθNT (µ)dµ+R22,T

≤
∫ ∞

0

∫
M
PNT (θ|µ)(∥θ−θ(ν(µ))∥κ > ε/

p
T ∨x|µ)NT (µ)dµd x +R22,T

≤
∫ ∞

0

∫
M
Pγ(∥C−1/2

w,µ (
p

T
−1
γ−C−1/2

w,µ Cm,µ)∥κ > ε/
p

T ∨x|µ)NT (µ)dµd x +R22,T

≤
p

k
κ
∫ ∞

0

∫
M

exp(−(ε∨ (x −
p

k)))NT (µ)dµd x → 0,

where Pγ(.) denotes probability corresponding to an k-dimensional standard Gaussian distribu-
tion, the first inequality is due to Assumption 8, the second inequality is due to Lemma 4 and the
last inequality is due to Lemma 2.

7.3. Proof of Lemma 1.

Proof. We aim to establish that∫
µ
Pµ

(
θ(µ) ∈ PRT

)
π(µ)dµ= 1−α+op (1). (14)

We begin by considering the case under the conditions of Theorem 1, as the argument for
Theorem 2 proceeds analogously.

We know from Theorem 1 that PRT (α) = {
θ : T (m̂(θ))⊤Aθ0 (m̂(θ)) ≤ Zα

}
such that Zα satisfies

the following condition

PT,θ
(
T (m̂(θ)⊤Aθ0 m̂(θ)) ≤ Zα

)= 1−α,

where PT,θ denotes the probability measure of m̂(θ)−µ+µ corresponding to the marginal
posterior pT (θ), which in this case is Gaussian with mean 0 and covariance matrix A−1

θ0
. Therefore,

Zα is the (1−α) quantile of a chi-squared distribution with q degrees of freedom. To verify
equation (14), it suffices to show that∫

Pµ
(
T (m̂(θ(µ))−µ+µ)⊤Aθ0 (m̂(θ(µ))−µ+µ)) ≤ Zα

)
fµ(µ)dµ= 1−α+op (1), (15)

where Aθ0 =Λ−1 −Λ−1
(
Ω(θ0)−1 +Λ−1

)−1
Λ−1, so that A−1

θ0
=Ω(θ0)+Λ by the Woodbury matrix

identity.

Note that under P, m(θ(µ)) =µ following the distribution specified by fµ(·) corresponding to
the local Gaussian prior, while for a given µ, under Pµ, m̂(θ(µ))−µ is asymptotically Gaussian
with mean zero and variance T −1Ω(θ0). Consequently, the sum of m̂(θ(µ))−µ and µ is Gaussian
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with mean zero and variance A−1
θ0

underP. Thus by the definition of the quantile Zα, the following
is true: ∫

Pµ
(
T (m̂(θ(µ))−µ+µ))⊤Aθ0 (m̂(θ(µ))−µ+µ) ≤ Zα

)
fµ(µ)dµ= 1−α,

which then implies equation (15) upon noting that ∥µ−µ0∥ =Op (
p

qp
T

) in this local misspecficia-
tion case.

We now generalize the preceding argument to the nonlocal case under the conditions of

Theorem 2. Here, we have that by definition PRT (α) =
{
θ :

∫
µpT (θ,µ)dµ≥ Zα

}
= {

θ : pT (θ) ≥ Zα
}

where Zα is chosen to satisfy

PT,θ
(
pT (θ) ≥ Zα

)= 1−α,

and PT,θ corresponds to the marginal posterior pT (θ). With a slight abuse of notation, we treat
pT (θ) as a function of the sample moments m̂(θ), rather than of θ directly. Define this function
as p̃T (m̂(θ)) := pT (θ). Then the above condition can be rewritten as

PT,θ
(
p̃T (m̂(θ)) ≥ Zα

)= 1−α. (16)

To verify equation (14), it suffices to show that∫
Pµ

(
p̃T (m̂(θ(µ))) ≥ Zα

)
fµ(µ)dµ= 1−α+op (1). (17)

Similar to the above local case, for a given µ, under the posterior the distribution of m̂(θ)−µ+µ
coincides with the asymptotic distribution of m̂(θ(µ))−µ+µ under Pµ, and thus Equation (17)
is implied by (16).

□

7.3.1. Step of Gaussian Integral. In this section, we derive a lemma regarding the Gaussian
integral and the tail probability involved in the above main theorem.

Lemma 2. Under Assumptions 7-8, 0 ≤ κ<∞, we have, for any fixed µ ∈ Γ, ε≍p
k logT ,∫

Bε
NT (θ|µ)

∣∣(1+∥θ−θ(µ)∥κ)∣∣dθNT (µ)dµ≲p kκ/2,

and

sup
µ∈Γ

Pγ(∥C−1/2
w,µ (

p
T

−1
γ−C−1/2

w,µ Cm,µ)∥κ > εp
T
|µ)≲p

p
k
κ

exp(−ε).

Proof. It suffices to just show it for κ > 0. It is well known that for a positive continuous
random variable X , E(X ) = ∫ ∞

0 P(X > x)d x. Recall that Γϵ is the set of µ corresponds Bε,
where ε is set to be ε ≍ p

k logT . We also have the fact that
∫

Bε
dθdµ ≤ ∫

Γ

∫
Bε,θ|µ dθdµ, with
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Bε,θ|µ
def= {θ :

p
T ∥G(θ(ν(µ)))(θ−θ(ν(µ)))∥ ≤ ε} for a point µ ∈ Γϵ, therefore, we may start by look-

ing at
∫

Bε,θ|µ NT (θ|µ)
∣∣(1+∥θ−θ(ν(µ))∥κ)∣∣dθ. Since for x ≥ 0, x = ∫

z≥0 1(z ≤ x)d z,∫
Bε,θ|µ

NT (θ|µ)(1+∥θ−θ(ν(µ))∥κ)1(θ ∈ Bε,θ)dθ

=
∫

Bε,θ|µ

∫ ∞

0
1(x ≤ 1+∥θ−θ(ν(µ))∥κ)1(θ ∈ Bε,θ)d xNT (θ|µ)dθ

=
∫ ∞

0

∫
Bε,θ|µ

1(1+∥θ−θ(ν(µ))∥κ ≥ x)1(θ ∈ Bε,θ)NT (θ|µ)dθd x.

As in the proof of Theorem 2, PNT (θ|µ)(.) is the probability measure conditioning on µ cor-
responding to the density NT (θ|µ), and γ is a standard k-dimensional multivariate Gaussian
random variable with the associated probability measure Pγ and density f (λ) with respect to the
Lebesgue measure. Let us look for a fixed µ, then we can proceed from the above as follows,∫ ∞

0
PNT (θ|µ)(∥θ−θ(ν(µ))∥κ > x −1,∥

p
T G(θ(ν(µ)))(θ−θ(ν(µ)))∥2 ≤ ε2|µ)d x

=
∫ ∞

0
Pγ(∥

p
T

−1
C−1/2

w,µ (γ−C−1/2
w,µ Cm,µ)∥ > ((x −1)∨0)1/κ,

∥
p

T
−1

G(θ(ν(µ)))(C−1/2
w,µ (γ−C−1/2

w,µ Cm,µ))∥2 ≤ ε2/T |µ)d x

≤
∫ ∞

0
Pγ(∥

p
T

−1
C−1/2

w,µ γ∥ > ((x −1)∨0)1/κ−∥C−1
w,µCm,µ∥|µ)d x.

Let λ=
(p

T
−1
λmax

(
C−1/2

w,µ

))2
, and by Assumption 6, λ≲p T −1, ∥C−1

w,µCm,µ∥≲p

p
kp
T

. Note that,∫ ∞

0
Pγ(∥

p
T

−1
C−1/2

w,µ γ∥ > ((x −1)∨0)1/κ−∥C−1/2
w,µ Cm,µ∥|µ)d x

=
∫ 1+(

p
k+pT ∥C−1

w,µCm,µ∥)κ

0
Pγ(∥

p
T

−1
C−1/2

w,µ γ∥ > ((x −1)∨0)1/κ−∥C−1
w,µCm,µ∥|µ)d x

+
∫ ∞

1+(
p

k+pT ∥C−1
w,µCm,µ∥)κ

Pγ(∥
p

T
−1

C−1/2
w,µ γ∥ > (x −1)1/κ−∥C−1

w,µCm,µ∥|µ)d x,

where the first term can be bounded by
∫ 1+(

p
k+pT ∥C−1

w,µCm,µ∥)κ

0 1d x ≲ k
κ
2 , and the second term,

via the inequality as in Lemma 7. For a positive constant c > 0, it can be bounded by∫ ∞
c(
p

k)κ
exp(−z2/κ/2)d z ≲p k

κ
2 . The second statement in Lemma 2 is a direct result of Lemma

7. □

7.3.2. Step of c∗. In this subsection, we study the term of c∗,

c∗ =
∫
Ξ

exp(−1

2
VT (h(.),θ,µ)+ logπ(µ))dθdµ/

∫
Ξ

exp(
1

2
Q(θ,µ)+ logπ(θ,µ))dθdµ

Lemma 3. Under Assumptions 7-8, we have 1≲p c∗ ≲p 1.
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Proof. Define

c∗1 =
∫

Bε
exp(−VT (h(.),θ,µ)/2+ log(π(µ)))dθdµ,

and

c∗2 =
∫

Bε
exp(

1

2
QT (θ,µ)+ logπ(µ,θ))dθdµ.

c∗ =
∫
Ξexp(−VT (h(.),θ,µ)/2+ log(π(µ)))dθdµ∫

Ξexp( 1
2QT (θ,µ)+ logπ(µ,θ))dθdµ

=
∫

Bε
exp(−VT (h(.),θ,µ)/2+ log(π(µ)))dθdµ∫
Bε

exp( 1
2QT (θ,µ)+ logπ(µ,θ))dθdµ

+op (1) = c∗1
c∗2

+op (1)

= c∗1∫
Bε

exp(−VT (h(.),θ,µ)/2+ log(π(µ))+RT (θ,µ))dθdµ
+op (1)

= c∗1∫
Bε

exp(−VT (h(.),θ,µ)/2+ log(π(µ)))[exp(RT (θ,µ))−1]dθdµ+ c∗1
+op (1).

If the above term is of order
∫

Bε exp(−VT (h(.),θ,µ)/2+log(π(µ)))dθdµ∫
Bε exp(−VT (h(.),θ,µ)/2+log(π(µ)))dθdµ(1+op (1))

+op (1), then we reach the

conclusion.

It boils down to show that supθ,µ∈Bε |RT (θ,µ)| = op (1). Because Assumption 8,

sup
(θ,µ)∈Bε

T |RT (θ,µ)|/(∥
p

T h(θ,µ)∥2 +k(logT )2)≲p

p
k(logT )2

p
T

∨ [
qp
kT

] → 0.

Then we have because of Assumption 8,

sup
(θ,µ)∈Bε

|RT (θ,µ)|≲p
(k3/2(logT )4)p

T
∨ k(logT )2qp

kT
→ 0.

Finally we show that c∗1 has a rate.

□

7.3.3. Steps of RT (θ,µ). Define Mm,T (θ,µ) =p
T [m̂(θ)−m̂(θ(ν(µ))−E(m̂(θ))+E(m̂(θ(ν(µ)))].

Assumption 10. (Tail assumptions of empirical moments) m̂(θ) and E(m̂(θ)) is second order
differentiable in θ. Let γ1 ∈Rk and γ2 ∈Rq , and γ1and γ2 are unit vectors under ∥ ·∥, there exists
constants u, v0 > 0 such that supγ1,γ2,(θ,µ)∈Bε logEexp(λγ⊤1 (∂Mm,T (θ,µ)/∂θ)⊤γ2)≲ v2

0λ
2/2, where

v0 ≲ 1p
T

, |λ| ≤ u, and u ≥p
k. Additionally, supµ∈Γ |m̂(θ(µ))−µ|max ≲p

(
p

k logT )p
T

.

In Assumption 10, u represents the strength of the tail assumption. Furthermore, v0 corre-
sponds to a proxy for variance, while the assumption

sup
γ1,γ2,(θ,µ)∈Bε

logEexp(λγ⊤1 (∂Mm,T (θ,µ)/∂θ)⊤γ2)≲ v2
0λ

2/2
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resembles a sub-Gaussian restriction, which remains valid under mild conditions. For instance,
consider GT (θ) = ∂m̂(θ)

∂θ
. Consequently, based on the differentiable condition in Assumption

10, we have
∂Mm,T (θ,µ)

∂θ = ∂[m̂(θ)−m̂(θ(ν(µ)))−E(m̂(θ))+E(m̂(θ(ν(µ))))]
∂θ = GT (θ)−G(θ)). GT (θ)−G(θ) is a

centered process, and it is reasonable to assume that it has sub-Gaussian tails.

Assumption 11. (Moments assumptions and identification) Em̂(θ) is second order continu-
ously differentiable, and supθ∈Θλmax

(
∂2
θ
E[g (Zt ,θ)]

)≤C . All singular values of G
(
θ
)

are bounded
from above and away from zero for all θ ∈ Θ. Furthermore, for all θ ∈ Θ ∥W (θ)−WT (θ)∥ =
Op

(
(logT )2

√
k
T

)
. for any ε> 0, sup∥θ′−θ∥≤ε ∥WT (θ′)−WT (θ)∥ =Op

(
ε
)
, and k2(logT )4

T → 0, q2

k T → 0.

Lemma 4. Assumption 11 implies that tr((G(θ)⊤G(θ)−1/2) ≍ k. , λmax(W (θ)) is bounded and
there exists a positive constant c such that ∥c[G(θ)⊤G(θ)]∥ ≤ 1. Under Assumptions 7, 10 -11, we
have the following:

sup
(θ,µ)∈Bε

| T RT (θ,µ)|
[k(logT )2 +∥pT h(θ,µ)∥2]

|≲p

p
k(logT )2

p
T

∨ qp
kT

.

Proof. In this step, we verify the detailed derivation regarding RT (θ,µ) in relation to Assumption
8. The main goal of this derivation is to show that on Bε, exists an arbitrary constant δ> 0, such
that with probability approaching 1,

sup
(θ,µ)∈Bε

|T RT (θ,µ)| ≤ δ(∥pT h(θ,µ)∥2 +k(logT )2)
p

k(logT )3

p
T

. (18)

Denote rT (θ,µ) = m̂(θ)−µ− (m̂(θ(ν(µ)))−µ)−h(θ,µ). We see that,

−T
(
m̂(θ)−µ)⊤W (θ(µ))

(
m̂(θ)−µ)

=−T
(
(m̂(θ(ν(µ)))−µ)+h(θ,µ)+ rT (θ,µ)

)⊤W (θ(µ))
(
(m̂(θ(ν(µ)))−µ)+h(θ,µ)+ rT (θ,µ)

)
,

and thus

T RT (θ,µ) =−T
(
rT (θ,µ)

)⊤W (θ(µ))
(
2h(θ,µ)+ rT (θ,µ)

)−2T
(
rT (θ,µ)

)⊤W (θ(µ))
(
(m̂(θ(ν(µ)))−µ)

)
+ log(π(θ|µ))− log(π(θ(ν(µ))|µ))+T

(
m̂(θ)−µ)⊤ (W (θ(µ))−Ŵ −1

T (θ))
(
m̂(θ)−µ)

.

We see that ∥(m̂(θ)−µ)∥≲ ∥rT (θ,µ)∥+∥m̂(θ(µ))−µ∥+∥h(θ,µ)∥≲p

(p
qp
T
∨

p
k logT logTp

T

)
. Thus,

we have sup(θ,µ)∈Bε T
(
m̂(θ)−µ)⊤ (W (θ(µ))−ŴT (θ))

(
m̂(θ)−µ)

≲p

(
qp
kT

∨ (log(T ))2
p

kp
T

)
sup(θ,µ)∈Bε(

p
k+p

T ∥h(θ,µ)∥).

By Assumption 11, we have that W (θ(µ)) has a bounded maximum eigenvalue, and from

Lemma 5 sup(θ,µ)∈Bε rT (θ,µ)≲p sup(θ,µ)∈Bε

p
k
(p

k+pT ∥h(θ,µ)∥
)

T , therefore, implied by Lemma 5 we
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have the following on Bε,

sup
(θ,µ)∈Bε

T RT (θ,µ)

≲p sup
(θ,µ)∈Bε

λmax(W (θ(µ)))T [∥rT (θ,µ)∥2 ∨ (∥rT (θ,µ)∥∥h(θ,µ)∥)]

+ sup
(θ,µ)∈Bε

λmax(W (θ(µ)))T [∥rT (θ,µ)∥∥m̂(θ(ν(µ)))−µ)∥

+ sup
(θ,µ)∈Bε

T
(
m̂(θ)−µ)⊤ (

W (θ(µ))−Ŵ −1
T (θ)

)(
m̂(θ)−µ)

≲p sup
(θ,µ)∈Bε

T (
p

k logT +
p

T ∥h(θ,µ)∥)2

(p
k

T

)2

∨ sup
(θ,µ)∈Bε

(p
k logT +

p
T ∥h(θ,µ)∥

) pkεp
T

+ sup
(θ,µ)∈Bε

T
p

k(
p

k logT +p
T ∥h(θ,µ)∥)

T

(p
qp
T

∨
p

k logTp
T

)

+ T (logT )2
p

kp
T

(p
qp
T

∨
p

k logTp
T

)2

.

Thus,

sup
θ,µ∈Bε

∣∣T RT (θ,µ)
∣∣

k(logT )2 +∥pT h(θ,µ)∥2
≲p

(logT )2
p

kp
T

.

Additionally, on Bε for sufficiently large T , we have that

sup
(θ,µ)∈Bε

|exp(RT (θ,µ))−1| ≤ sup
(θ,µ)∈Bε

(|RT (θ,µ)|+ |RT (θ,µ)|2) ,

which is due to fact that |ex −1−x − 1
2 x2| = o(|x|2) for sufficiently small |x|.

□

7.3.4. Proof of rT (θ,µ). This section provides the intermediate results used in the proof of Lemma
4

Lemma 5. Under Assumptions 10 to11,

sup
θ,µ∈Bε

∥rT (θ,µ)∥p
k logT +p

T ∥h(θ,µ)∥
≲p

p
k

T
,

Proof. Let Mm,T (θ,µ) = Mm,T (θ,µ)p
k logT+pT ∥h(θ,µ)∥ , which is a centered object by definition and satis-

fies the following, E
(
Mm,T (θ,µ)

) = 0. We focus on its behaviors on Bε. Assumption 11 im-
poses differentiability conditions on E(m̂(θ))−E(m̂(θ(ν(µ))) concerning θ, and thus, the resid-
ual terms Mm,T (θ,µ) shrinks to 0 within Bε because, on Bε, the higher-order terms related to
∥G(θ(ν(µ)))(θ−θ(ν(µ)))∥ also diminishes to 0 following Assumption 11. We use Mm,T (θ,µ) to
analyze rT (θ,µ).
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By construction, we have that rT (θ,µ)p
k logT+pT ∥h(θ,µ)∥ −Mm,T (θ,µ) = −h(θ,µ)+E(m̂(θ))−E(m̂(θ(ν(µ))))p

k logT+pT ∥h(θ,µ)∥ . Ac-

cording to Assumption 11, on Bε, ∥ rT (θ,µ)p
k logT+pT ∥h(θ,µ)∥ −Mm,T (θ,µ)∥ is bounded by

∥−h(θ,µ)+ (supθ,µ∈Bε λmax(∂2E(g (Zt ,θ))/∂θ∂θ⊤))∥θ−θ(ν(µ))∥2∥
p

k logT +p
T ∥h(θ,µ)∥

≲

p
k[
p

k log(T )]2

T
.

Assumption 11 implies that k log(T )p
T

→ 0, and thus supθ,µ∈Bε ∥
rT (θ,µ)p

k logT+pT ∥h(θ,µ)∥ −Mm,T (θ,µ)∥≪
p

k(logT )p
T

on Bε. Then it suffices to examine Mm,T (θ,µ) for the rate of rT (θ,µ)p
k logT+pT ∥h(θ,µ)∥ . We then

use Lemma 8 to analyze the term Mm,T (θ,µ), where the variable µ in Theorem B.15 corresponds
to (θ−θ(ν(µ))) ∈Rk in our context. As a result,Υ◦(r ) should represent a ball containing Bε.

We next analyze the terms, i.e., A and v0r zH(x) in Theorem B.15 in Spokoiny (2017), where
v0 refers to variance, r refers to radius and zH(x) refers to entropy of Υ◦(r ). By Assumption

11, we have r ≈
p

k logTp
T

. The A therein is identity Iq , and zH(x) ≈ p
k, and due to the second

differentiability assumption in Assumption 10, v0 ≲ 1/
p

T .

Then, we have supθ,µ∈Bε Mm,T (θ,µ)≲p
k logT

T and supθ,µ∈Bε Mm,T (θ,µ)≲p

p
k

T . □

7.3.5. Useful Lemmas. Here, we list a few useful lemmas from Spokoiny (2017) and Spokoiny
and Panov (2019).

Lemma 6. (Corollary A.3. from Spokoiny and Panov (2019)) Let γ be a standard normal random
vector in Rk . Then for any x > 0

P
(
∥γ∥2 ≥ k +2

p
kx+2x

)
≤ e−x,

P(∥γ∥ ≥
p

k +p
2x) ≤ e−x,

P
(
∥γ∥2 ≤ k −2

p
kx

)
≤ e−x.

Lemma 7. (Theorem A.2. from Spokoiny and Panov (2019)) Let H be a positive definite matrix.
Let ξ∼ N

(
0, H 2

)
be a mean-zero normal random vector inRk and B be a symmetric non-negative

definite matrix such that A = H−1B H is a trace operator in Rk . Then with k = tr(A), v2 = tr
(

A2
)
,

and λ= ∥A∥, it holds for each x ≥ 0,

P
(
ξ⊤Bξ≥ z2(A,x)

)≤ e−x,

with z(A,x)
def=

√
k+2vx1/2 +2λx.

It also implies

P
(∥∥B 1/2ξ

∥∥> k1/2 + (2λx)1/2)≤ e−x.

If B is symmetric but not necessarily positive, then

P
(|ξ⊤Bξ−k| > 2vx1/2 +2λx

)≤ 2e−x.
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Lemma 8. (Theorem B.15. from Spokoiny (2017)) Let Y (v ) with v ∈Υ0(r ) = {v ∈Υ : ∥v −v∗∥ ≤ r }
andΥ⊆Rk , be a smooth centered random vector process with values inRq . Let also E[Y (v∗)] = 0
for the center v∗ ∈Υ0(r ). Without loss of generality, assume v∗ = 0. We aim to bound ∥Y (v)∥
uniformly over v over a vicinityΥ0(r ) of v∗. By ∇Y (v) we denote the k ×q matrix with entries
∇v i Y (v), i ≤ k, j ≤ q . Suppose that Y (v) satisfies for each γ1 ∈ Rk and γ2 ∈ Rq with

∥∥γ1

∥∥ =∥∥γ2

∥∥= 1, and there exists a positive constant v0,

sup
v∈Υ

logEexp
{
λγ⊤

1 ∇Y (v )γ2

}≤ v2
0λ

2

2
, |λ| ≤ g .

Let A be a matrix fulfilling 1/2 ≤ ∥∥A A⊤∥∥≤ 1. Then for each r , it holds

P

{
sup

v∈Υ0(r )
∥A∇Y (v )∥ >p

8v0r zH(x)

}
≤ e−x,

where zH(x) is given by the following with Q2 = p A +Q2 (Υ◦(r )).

zH(x) =
{

2
√
Q2 +2x, if Q2 +2x ≤ g2,

2 g−1x+g−1Q2 +g, if Q2 +2x > g2.

In the above,Q2 relates to the entropy of the setΥ0(r ), p A denotes a trace norm of a trace operator
A−2, and both can be calculated according to section B.4 in Spokoiny (2017) as outlined below.

For each k ≤ 1, by Mk we denote a rk -net inΥ◦(r0) with rk = r02−k , so thatΥ◦(r0) ⊆⋃
v∈Mk

{v ′ ∈
Υ : ∥v ′−v∥ ≤ rk }, then Q2 (Υ◦)

def= ∑∞
k=1 2−k+1 log(2Nk ) with Nk

def= |Mk | being the cardinality of
Mk . For a positive self-adjoint operator in R∞, denoted by H, such that λmin(H) = 1 and H−2

is a trace operator, then pH
def= tr

(
H−2

)=∑∞
j=1 h−2

j <∞, where 1 = h1 ≤ h2 ≤ ·· · are the ordered
eigenvalues of H .

Lemma 9. (Theorem B.8. in Spokoiny (2017)) Suppose that for some α > 1, pH(α)
def=∑∞

j=1 h−2
j logα

(
h2

j

)
<∞, then Q2(Υ◦

H
(r )) ≤ C

∑∞
j=1 h−1

j , with Υ◦
H

(r ) = {v ′ ∈Υ : ∥H(v ′− v)∥ ≤ r }, for

a fixed center v .

Lemma 10. (Lemma A.17 from Spokoiny and Panov (2019)) Let T be a linear operator in Rk with
∥T ∥op ≤ 1. Let z ∈ Rk be a unit norm vector: ∥z∥ = 1. Define k = tr

(
T ⊤T

)
. For any positive

C0, r0 with 1/2 < C0 ≤ 1 and C0r0 > 2
p

k +1+p
x,

E

{
|〈z ,γ〉|2 exp

(
−C0r0∥T γ∥+ C0r2

0

2
+ 1

2
∥T γ∥2

)
I
(∥T γ∥ > r0

)}≤ Ce−(k+x)/2.

7.4. Proof of Theorem 3.

Proof.

Step 1
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Under the information equality, we have σ2
η,µ = (∂η(θ(µ))/∂θ)⊤ JW (θ(µ))−1(∂η(θ(µ))/∂θ). From

Assumption 9, the frequentist confidence interval is presented as

[(∂η(θ(µ))/∂θ)⊤θ̂(µ)+ ση,µzα/2p
T

, (∂η(θ(µ))/∂θ)⊤θ̂(µ)+ z1−α/2ση,µp
T

].

Step 2
As the second step, we need to prove that under the information equality, the confidence interval
agrees with the frequentist confidence interval. As suggested by Theorem 2, pT (θ,µ) can be
approximated well by NT (θ,µ), and the conditional distribution of θ on µ (with density NT (θ|µ))
follows a Gaussian distribution with mean C−1

w,µCm,µ and variance (TCw,µ)−1. As we noticed,

∂η(θ(µ))/∂θ⊤(TCw,µ)−1∂η(θ(µ))/∂θ = σ2
η,µ/T under information equality. Thus, it suffices to

check that the quantiles of pT (θ,µ) and NT (θ,µ) indeed agree.

Let

Hη,T (s,µ) =Fη,T

(
η

(
θ(µ)

)+ s/
p

T
)
=

∫
θ∈Θ:η(θ)≤η(θ(µ))+s/

p
T

pT (θ,µ)/pT (µ)dθ,

Ĥη,T (s,µ) =
∫
θ∈Θ:η(θ)≤η(θ(µ))+s/

p
T

NT (θ,µ)/NT (µ)dθ,

Hη,∞(s,µ) =
∫
θ∈Θ:(∂η(θ(µ))/∂θ)⊤(θ−θ(µ))≤s/

p
T

NT (θ,µ)/NT (µ)dθ,

where NT (µ) = ∫
θ∈ΘNT (θ,µ)dθ. By definition of total variation of moments norm and Theorem

2, we have
sup

s∈S (µ),µ∈Γ

∣∣Hη,T (s,µ)− Ĥη,T (s,µ)
∣∣→p 0,

where S (µ) denotes the support of Hη,T (·,µ) such that S (µ) = {s ∈R : s =p
T (η(θ)−η(θ(µ))),θ ∈

Θ}.

By the uniform continuity of the integral of the normal density with respect to the boundary
integration, we have

sup
s∈S (µ),µ∈Γ

∣∣Ĥη,T (s,µ)−Hη,∞(s,µ)
∣∣→p 0,

which implies that
sup

s∈S (µ),µ∈Γ

∣∣Hη,T (s,µ)−Hη,∞(s,µ)
∣∣→p 0.

The convergence of the distribution function implies the convergence of quantiles at continu-
ous points of distribution functions so that H−1

η,T (α,µ)−H−1
η,∞(α,µ) →p 0, where H−1

η,∞(α,µ) and

H−1
η,∞(α,µ) are defined as the inverse of the function Hη,T (s,µ) in terms of s for any fixed µ.

Next, similar to the proof of Theorem 3 in Chernozhukov and Hong (2003) and we have that

Hη,∞(s,µ) =PNT (θ|µ)

{
(∂η(θ(µ))/∂θ)⊤(θ−θ(µ)) ≤ s/

p
T

}
so that H−1

η,∞(α,µ) = (∂η(θ(µ))/∂θ)⊤
p

TŨT (µ) + qα
√

(∂η(θ(µ))/∂θ)⊤ JW (µ)−1(∂η(θ(µ))/∂θ) im-
plied by the proof of Theorem 2, where qα is the α-quantile of a standard normal distribution.
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The rest of the results follow from the fact that H−1
η,T (α,µ) =p

T (cη,T (α,µ)−η(θ(µ))) and the delta
method.

Recall that fµ(µ) = ∂Fµ(µ)/∂µ be the density corresponding to P∗(.). To prove the second
statement, we have,

lim
T→∞

P∗ {
η(θ(µ̃)) ∈∪µ′∈M

˜Inα,η(.)(µ
′),∀µ̃ ∈ Γ}

= lim
T→∞

∫
µ
P∗
θ(µ),µ

{
η(θ(µ̃)) ∈∪µ′∈M

˜Inα,η(.)(µ
′),∀µ̃ ∈ Γ}

fµ(µ)dµ

≥ lim
T→∞

∫
µ
P∗
θ(µ),µ

{
η(θ(µ̃)) ∈ ˜Inα,η(.)(µ̃),∀µ̃ ∈ Γ}

fµ(µ)dµ= 1−α.

□

7.5. Proof of Theorem 4.

Proof. Keep µ ∈ Γ throughout this proof. In view of Assumption of the consistency ofΩT (θ(µ)), it
suffices to show that ∥ Ĵ−1

T

(
θ(µ)

)− J−1
W (θ(µ))∥→p 0, and then conclude using the delta method.

Let ζµ(θ) be a function of θ such that

ζµ(θ) =
p

T
(
θ−θ(µ)

)−p
T JW

(
θ(µ)

)−1
∆T,W

(
θ(µ)

)︸ ︷︷ ︸
ŨT (µ)

,

and the localized quasi-posterior density for ζµ(θ) is

pT (ζµ(θ),µ) = 1p
T

pT

(
ζµ(θ)/

p
T +θ(µ)+ŨT (µ),µ

)
.

And similarly, define NT (ζµ(θ),µ) = 1p
T

NT
(
ζµ(θ)/

p
T +θ(µ)+ŨT (µ),µ

)
. Define HT for the set

of ζµ(θ) containing the set {θ :
p

T ∥h(θ,µ)∥ ≤ ε,θ ∈Θ}. Denote ζµ(θ) = (
ζµ,1(θ), . . . ,ζµ,k (θ)

)
and

T̃T = (
T̃T 1, . . . , T̃T k

)
where T̃T =p

T
(
θ̂(µ)−θ(µ)

)−p
TŨT (µ).

Note also

Ĵ−1
T

(
θ̂(µ)

)=∫
Θ

T (θ− θ̂(µ))(θ− θ̂(µ))⊤pT (θ,µ)/pT (µ)dθ1(µ : pT (µ) > c)

=
∫

HT

(
ζµ(θ)−

p
T

(
θ̂(µ)−θ(µ)

)+p
TŨT (µ)

)
·
(
ζµ(θ)−

p
T

(
θ̂(µ)−θ(µ)

)+p
TŨT (µ)

)⊤
[pT (ζµ(θ),µ)/pT (µ)]dζµ(θ)1(µ : pT (µ) > c),

and

J̃−1
T (θ(µ)) ≡

∫
HT

ζµ(θ)ζµ(θ)⊤pT (ζµ(θ),µ)/pT (µ)dζµ(θ).
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J̃−1,c
T

(
θ(µ)

)≡ ∫
HT

ζµ(θ)ζµ(θ)⊤pT (ζµ(θ),µ)/pT (µ)dζµ(θ)1(µ : pT (µ) > c).

Therefore we have J̃−1
T (θ(µ))− J̃−1,c

T (θ(µ)) = ∫
HT
ζµ(θ)ζµ(θ)⊤[pT (ζµ(θ),µ)/pT (µ)]dζµ(θ)1(µ :

pT (µ) ≤ c). Due to the condition that
∫

1{pT (µ)≤c} fµ(µ)dµ = op (1), thus we have ∥ J̃−1
T (θ(µ))−

J̃−1,c
T (θ(µ))∥ = op (1).

So Ĵ−1
T (θ̂(µ))− J̃−1,c

T (θ(µ)) =−2
∫

HT
ζµ(θ)T̃ ⊤

T pT (ζµ(θ),µ)/pT (µ)dζµ(θ)1(µ : pT (µ) > c)+∫
HT

T̃T T̃ ⊤
T pT (ζµ(θ),µ)/pT (µ)dζµ(θ)1(µ : pT (µ) > c), which will be verified to be ignorable in

statement (c), (d), (e) and (f).

DenoteΘ(ζµ(θ)) as the set corresponding to HT . Recall that

J−1
W

(
θ(µ)

)= ∫
Θ(ζµ(θ))

ζµ(θ)ζµ(θ)⊤NT (ζµ(θ),µ)/NT (µ)dζµ(θ)+op (1).

So

J−1
W (θ(µ))− J̃−1

T (θ(µ)) =
∫

HT

ζµ(θ)ζµ(θ)⊤(NT (ζµ(θ),µ)/NT (µ)−pT (ζµ(θ),µ)/pT (µ))dζµ(θ)

+
∫

H c
T

ζµ(θ)ζµ(θ)⊤pT (ζµ(θ),µ)/pT (µ)dζµ(θ).

This is verified in (a) and (b). Denote T̃T j as the j th element of T̃T (1 ≤ j ≤ k).

(a) [
∑

i , j {
∫

HT
ζµ,i (θ)ζµ, j (θ)(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))dζµ(θ)}2]1/2 = op (1) re-

sults from the following steps. First, note that one vector norm inequality that |v |2 =
(
∑

i v2
i )

1
2 ≤ |v |1 = (

∑
i |vi |), v ∈Rd implies the above term is upper bounded by

∑
i , j

∣∣∣∣∫
HT

ζµ,i (θ)ζµ, j (θ)
∣∣(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))

∣∣dζµ(θ)

∣∣∣∣ .

For each absolute term within the summation, we see by the Cauchy-Schwartz inequality
or the Hölder inequality,∣∣∣∣∫

HT

ζµ,i (θ)ζµ, j (θ)
∣∣pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ))

∣∣dζµ(θ)

∣∣∣∣
≤

[∫
HT

ζµ,i (θ)2
∣∣(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))

∣∣dζµ(θ)

]1/2

[∫
HT

ζµ, j (θ)2
∣∣(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))

∣∣dζµ(θ)

]1/2

.
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Then we have,

∑
i , j

[∫
HT

ζµ,i (θ)2
∣∣(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))

∣∣dζµ(θ)

]1/2

[∫
HT

ζµ, j (θ)2
∣∣(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))

∣∣dζµ(θ)

]1/2

=∑
i

[∫
HT

ζµ,i (θ)2
∣∣(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))

∣∣dζµ(θ)

]1/2

∑
j

[∫
HT

ζµ, j (θ)2
∣∣(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))

∣∣dζµ(θ)

]1/2

.

We know∑
i

[∫
HT

ζµ,i (θ)2
∣∣(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))

∣∣dζµ(θ)

]1/2

≤k

[
max

i

∫
HT

ζµ,i (θ)2
∣∣(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))

∣∣dζµ(θ)

]1/2

Then it boils down to bound k maxi
∫

HT
ζµ,i (θ)2

∣∣(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))
∣∣dζµ(θ),

which is guaranteed by the rate assumption in Assumption 8.
(b) Next we look at

∑
1≤i , j≤k |

∫
H c

T
ζµ,i (θ)ζµ, j (θ)pT (ζµ(θ),µ)/pT (µ)dζµ(θ)| = op (1) by definition

of pT (θ,µ) and JT
(
θ(µ)

)
being uniformly nonsingular by Lemma 10. It suffice to look at

k|∫H c
T

∑
i h2

i (µ)pT (ζµ(θ),µ)/pT (µ)dζµ(θ)|. This is further upper bounded by∣∣∣∣∣
∫

H c
T

∑
i
ζ2
µ,i (θ)pT (ζµ(θ),µ)/pT (µ)dζµ(θ)

∣∣∣∣∣
≤

∣∣∣∣∣
∫

H c
T

∑
i
ζ2
µ,i (θ)|pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ)|dζµ(θ)

∣∣∣∣∣
+

∣∣∣∣∣
∫

H c
T

∑
i
ζ2
µ,i (θ)NT (ζµ(θ),µ)/NT (µ)]dζµ(θ)

∣∣∣∣∣
(c) By Assumption 9, we verify that ∥T̃T ∥2 is of small order cite the rate of CUE. Thus, we have

the
∫

HT

∥∥T̃T
∥∥2︸ ︷︷ ︸

=op ((q/
p

T )2)

|((pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))
) |dζµ(θ) = op (( qp

T
)2) by

Theorem 2 ,
(d)

∫
HT

∥∥T̃T
∥∥2︸ ︷︷ ︸

=op ((q/
p

T )2)

NT (ζµ(θ),µ)/NT (µ)dζµ(θ) = op (1) by Theorem 2, definition of

NT (ζµ(θ),µ), and JT
(
θ(µ)

)
being nonsingular,

(e) For all 1 ≤ i , j ≤ k,
∑

i , j |
∫

HT
ζµ,i (θ) T̃T j︸︷︷︸

=op (1/
p

T )

|(pT (ζµ(θ),µ)/pT (µ)−NT (ζµ(θ),µ)/NT (µ))|dζµ(θ)| =

op (1) by Theorem 2 ,
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(f) For all 1 ≤ i , j ≤ k,
∑

i , j |
∫

HT
ζµ,i (θ) T̃T j︸︷︷︸

=op (1/
p

T )

NT (ζµ(θ),µ)/NT (µ)dζµ(θ)| = op (q/
p

T ) by

Theorems 2, definition of NT (ζµ(θ),µ), and JW
(
θ(µ)

)
being uniformly nonsingular, from

which the required conclusion follows.

□

8. DECLARATION OF GENERATIVE AI AND AI-ASSISTED TECHNOLOGIES IN THE WRITING PROCESS

During the preparation of this work the authors used ChatGPT 4.0 and ChatGPT 03 to suggest
edits to some lengthy passages for concision and clarity. After using these tools, the authors
reviewed and edited the content as needed and take full responsibility for the content of the
published article.
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SA-1. VERIFICATION OF ASSUMPTION 9.

We impose a high-level expansion assumption in Assumption 9. We extend the method of ob-
taining an expansion of a CUE estimator from Newey and Smith (2004) to our high-dimensional
misspecified moment settings to verify that assumption. Corollary SA-1 delivers this expansion.

Corollary SA-1. Suppose that the following assumptions hold with ξ> 2:

(1) Assumption 1;
(2) Assumption 6;
(3) g (Zt ,θ) is continuous in θ ∈Θwith probability one;
(4) for a given µ ∈ M , sup1≤u≤q,θ∈ΘE(∥e⊤

u (g (Zt ,θ) − µ)∥ξ) < C , supθ∈ΘE(∥(g (Zt ,θ) −
µ)(g (Zt ,θ)−µ)⊤∥ξ) <C qξ/2 for some positive constant C , where eu denotes a q ×1 vector
with the uth element of eu being one and the rest entries are zero;

(5) Define ∥.∥F as the Fubinius norm. For each given µ ∈ Γ, E∥(g (Zt ,θ(µ))−µ)(g (Zt ,θ(µ))−
µ)⊤−Ω(θ(µ),µ)∥2

F =O(q), E∥g (Zt ,θ(µ))−µ∥ξ≲ qξ/2, E∥(g (Zt ,θ(µ))−µ)(g (Zt ,θ(µ))−µ)⊤−
Ω(θ(µ),µ)∥ξF ≲ qξ/2;

(6) g (Zt ,θ) is continuously differentiable, and Gt (θ) = ∂g t (θ)/∂θ;
(7) there exists a neighborhood, N (θ(µ)), of θ(µ) such that for each θ ∈N (θ(µ)): there exists

a non-negative scalar random variable b(Zt ) such that ∥g (Zt ,θ)−g (Zt ,θ(µ))∥ ≤ b(Zt )∥θ−
θ(µ)∥, ∥∂(g (Zt ,θ)−µ)/∂θ−∂(g (Zt ,θ(µ))−µ)/∂θ∥ ≤ b(Zt )∥θ−θ(µ)∥, and E[(b(Zt ))2] <∞;

(8) ∥supθ∈Θ(T −1 ∑
t {Gt (θ) − EGt (θ)})∥ = op (1), there exists C > 0 such that 1/C ≤

λmin(E[(∂(g (Zt ,θ)−µ)/∂θ⊤)]⊤E[∂(g (Zt ,θ)−µ)/∂θ⊤]) ≤λmax(E(∂(g (Zt ,θ)−µ)/∂θ⊤)⊤E∂(g (Zt ,θ)−
µ)/∂θ⊤) ≤C ;

(9) There exits a constant ξλ ∈ (ξ−1,2−1) such that max{qT −ξλ+ξ−1
, qT ξλ−2−1

} → 0.

Then, the following expansion (SA-1) holds for any fixed µ ∈ Γ,∥∥θ̂(µ)−θ(µ)− (G(θ(µ))⊤Ω(θ(µ),µ)−1G(θ(µ)))−1G(θ(µ))⊤Ω(θ(µ),µ)−1 (
m̂

(
θ(µ)

)−µ)∥∥= op (qT −1/2),
(SA-1)

where we consider θ̂(µ) = argminθ∈Θ{m̂(θ)−µ}⊤Ω̂(θ,µ)−1{m̂(θ)−µ},Ω(θ(µ),µ) = E[(g (Zt ,θ(µ))−
µ)(g (Zt ,θ(µ))−µ)⊤] and Ω̂(θ(µ),µ) = T −1 ∑T

t=1[(g (Zt ,θ(µ))−µ)(g (Zt ,θ(µ))−µ)⊤]. Thus, Assump-
tion 9 is satisfied for this case once the distributional property of (m̂(θ)−µ) leads to the Gaussian
limiting distribution, which hold under conditions indicated by, e.g., the central limit theorem
proposed in Francq and Zakoïan (2005).

Before the discussion, we first claim several lemmas employed in proving Corollary SA-1,
which correspond to Lemmas A1-A3 in Newey and Smith (2004) and are adjusted to fit our
conditions. Furthermore, we let ρ(v) be a quadratic scalar function such that ρ(v) =−v − 1

2 v2

and let ρ j (v) = ∂ jρ(v)/∂v j , and we let

P̂µ(θ,λ) = 1

T

T∑
t=1

ρ(λ⊤(g (Zt ,θ)−µ)) =−λ⊤ 1

T

T∑
t=1

(g (Zt ,θ)−µ))−λ⊤ 1

T

T∑
t=1

(g (Zt ,θ)−µ))(g (Zt ,θ)−µ))⊤λ.
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The estimator for θ(µ) for a given µ ∈ Γ then corresponds to a saddle point problem such that

θ̂(µ) = argmin
θ∈Θ

max
λ∈Λ̂T,µ(θ)

P̂µ(θ,λ),

with Λ̂T,µ(θ) = {λ : λ⊤(g (Zt ,θ)−µ) ∈ Λg ,1 ≤ t ≤ T } and Λg being an open interval containing
zero. We use the following notations for a given µ ∈ Γ. We denote g t (θ) = g (Zt ,θ) and ĝµ,t =
g t (θ̂(µ)). Let υθλ be a augmented parameter vector such that υθλ = (θ⊤,λ⊤)⊤ and for a given
µ ∈ Γ, υθ(µ)0 = (θ(µ)⊤,0⊤)⊤. Let vt (µ,υθλ) = λ⊤(g t (θ)−µ) and vt ,1(µ,υθλ) = ∂vt (µ,υθλ)/∂υθλ =(
λ⊤Gt (θ), (g t (θ)−µ)⊤

)⊤
. Denote mµ (Zt ,υθλ) = ∂ρ (

vt (µ,υθλ)
)

/∂υθλ = ρ1
(
vt (µ,υθλ)

)
vt ,1(µ,υθλ),

mµ,t (υθλ) = mµ (Zt ,υθλ), Mµ = E
[
∂mµ,t

(
υθ(µ)0

)
/∂υ⊤

θλ

]
, ψµ(Zt ) = −M−1

µ mµ (Zt ,υθλ) and ψ̂µ =∑T
t=1ψµ(Zt )/

p
T . By construction, we have Mµ =−

(
0 G(θ(µ))⊤

G(θ(µ)) Ω(θ(µ),µ)

)
.

Lemma SA-11. (Generalised High dimensional Fuk-Nagaev Inequality) Consider i.i.d. centered
X1, ..., Xn in Rk . Let Σ := E[X1X ⊤

1 ] and ω := diag(Σ). Assume that E∥X1∥ξ <∞ for some ξ> 2, then
we have for any t > 0,

P
{∥∥ n∑

i=1
Xi

∥∥≥ 2
√

n|ω|1 + t
}
≤Cξ

nE∥X1∥ξ
tξ

+exp
(
− t 2

3n∥ω∥
)
, (SA-2)

where Cξ > 0 is a constant only depending on ξ.

Proof. See Theorem 3.1 in Einmahl and Li (2008). We apply Theorem 3.1 therein with (B ,∥ ·∥) =(
Rk ,∥ ·∥) where η = δ = 1. The unit ball of the dual of

(
Rk ,∥ ·∥) is the set of linear functions{

x = (x1, . . . , xk )T 7→∑k
j=1λ j x j : (

∑k
j=1

∣∣λ j
∣∣2)1/2 ≤ 1

}
, and for λ1, . . . ,λk with (

∑k
j=1

∣∣λ j
∣∣2)1/2 ≤ 1,

with the following step,

n∑
i=1

E

[(
k∑

j=1
λ j Xi j

)2]
=

n∑
i=1

E
[
λ⊤Xi X ⊤

i λ
]≤ n∥λ∥λmax(Σ) ≤ n∥ω∥.

Hence in this case,Λ2
n in Theorem 3.1 Einmahl and Li (2008) is bounded by n∥ω∥. Additionally,

by Jensen’s inequality,
p

n|ω|1 ≥ E∥∑n
i=1 Xi∥. Therefore, Lemma SA-11 is implied by Theorem 3.1

Einmahl and Li (2008). □

Lemma SA-12. Under the assumptions of Corollary SA-1, let bt = supθ∈Θ ∥g (Zt ,θ)−µ∥ for a
µ ∈ Γ, then max1≤t≤T bt =Op (q1/2T 1/ξ).

Proof of Lemma SA-12.
Denote btu = supθ∈Θ ∥e⊤

u (g (Zt ,θ)−µ)∥, and thus bt ≤ max1≤u≤q
p

qbtu . The assumption that

max1≤u≤q E(bξtu) <C and the Markov inequality imply that max1≤u≤q max1≤t≤T btu =Op (T 1/ξ),
and thus the conclusion follows. □

Lemma SA-13. Under the assumptions of Corollary SA-1, supθ∈Θ,λ∈ΛT,sλ
,1≤t≤T ∥λ⊤(g (Zt ,θ)−

µ)∥ =Op (sλq
1
2 T −ξλ+ 1

ξ ) withΛT,sλ = {λ : ∥λ∥≲ sλT −ξλ} and sλ > 0.
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Proof of Lemma SA-13. This is a direct result of Lemma SA-12 and Cauchy-Schwarz inequality

such that supθ∈Θ,λ∈ΛT,sλ
,1≤t≤T ∥λ⊤(g (Zt ,θ)−µ)∥ ≤ sλT −ξλ max1≤t≤T bt = sλT −ξλOp (q

1
2 T

1
ξ ). □

Lemma SA-14. Under the assumptions of Corollary SA-1, λ̄= argmaxλ∈ΛT,q1/2
P̂µ(θ(µ),λ) exists

with probability approaching one such that λ̄ = Op (q1/2T −1/2) and maxλ∈ΛT,q1/2 P̂µ(θ(µ),λ) =
Op (qT −1) withΛT,q1/2 = {λ : ∥λ∥≲ q1/2T −ξλ} as in Lemma SA-13.

Proof of Lemma SA-14. ∥ 1
T

∑
t (g (Zt ,θ(µ))−µ)(g (Zt ,θ(µ))−µ)⊤−Ω(θ(µ),µ)∥

=Op (q1/2T −1/2) = op (1) by (9) results from Lemma SA-11 and the assumptions E∥(g (Zt ,θ(µ))−
µ)(g (Zt ,θ(µ))−µ)⊤−Ω(θ(µ),µ)∥2

F =O(q), E∥(g (Zt ,θ(µ))−µ)(g (Zt ,θ(µ))−µ)⊤−Ω(θ(µ),µ)∥ξF ≲
qξ/2. By the global concavity of P̂µ(θ(µ),λ) we know λ̄ exists and a first-order Taylor expansion
around zero for P̂µ(θ(µ),λ) gives,

0 = P̂µ(θ(µ),0) ≤ P̂µ(θ(µ), λ̄) =−λ̄⊤(m̂(θ(µ))−µ)− 1

2
λ̄⊤(

1

T

∑
t

(g t (θ(µ))−µ)⊤(g t (θ(µ))−µ))λ̄

≤−λ̄⊤(m̂(θ(µ))−µ)− 1

2
(λmin(Ω(θ(µ),µ))+op (1))∥λ̄∥2 ≲p ∥λ̄∥∥m̂(θ(µ))−µ∥−C∥λ̄∥2,

where C is a positive constant. We know ∥λ̄∥ ≤ ∥m̂(θ(µ))−µ∥/C =Op (q1/2T −1/2), which guaran-
tees and thus supµ∈Γmaxλ∈ΛT,q1/2 P̂µ(θ(µ),λ) =Op (qT −1). □

Lemmas SA-12-SA-14 are intermediate results used for the proof of Lemma SA-15. Lemma
SA-14 provides initial results for the objective function evaluated at the true value θ(µ), the rate
of which serves as an upper bound in order to derive the rate of ∥m̂(θ̂(µ))−µ∥ stated in Lemma
SA-15. The rate of ∥m̂(θ̂(µ))−µ∥ is instrumental in deducing a rate of ∥θ̂(µ)−θ(µ)∥ in Lemma
SA-16 and thus the consistency result in Lemma SA-17, leading to the eventual asymptotic
normality.

Lemma SA-15. Under the assumptions of Corollary SA-1, ∥m̂(θ̂(µ))−µ∥ =Op (qT −1/2) for any
µ ∈ Γ.

Proof of Lemma SA-15. Since we have a saddle point problem,

P̂µ(θ̂(µ), λ̂g (ϵT )) ≤ P̂µ(θ̂(µ), λ̂) ≤ max
λ∈ΛT,q1/2

P̂µ(θ(µ),λ),

where λ̂g (ϵT ) =−ϵT (m̂(θ̂(µ))−µ) and ϵT is a positive scalar. We have from Lemma SA-14 that
P̂µ(θ̂(µ), λ̂) ≤ maxλ∈ΛT,q1/2 P̂µ(θ(µ),λ) =Op (qT −1). For the term P̂µ(θ̂(µ), λ̂g (ϵT )) we have that

P̂µ(θ̂(µ), λ̂g (ϵT )) = ϵT ∥m̂(θ̂(µ))−µ∥2 −1/2(λ̂g (ϵT ))⊤(
1

T

∑
t

(g t (θ̂(µ))−µ)⊤(g t (θ̂(µ))−µ))λ̂g (ϵT ),

and thus the fact that

1/2(λ̂g (ϵT ))⊤(
1

T

∑
t

(g t (θ̂(µ))−µ)⊤(g t (θ̂(µ))−µ))λ̂g (ϵT ) ≤ q(
∑
t=1

b2
t /T )∥λ̂g (ϵT )∥2
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implied by the proof of Lemma SA-12 leads to

ϵT ∥m̂(θ̂(µ))−µ∥2 −Op (q)∥λ̂g (ϵT )∥2 = ϵT ∥m̂(θ̂(µ))−µ∥2 −Op (q)ϵ2
T ∥m̂(θ̂(µ))−µ∥2 ≤Op (qT −1)

If we choose ϵT = T −ξλ/∥m̂(θ̂(µ))−µ∥ so that λ̂g (T −ξλ/∥m̂(θ̂(µ))−µ∥) ∈ΛT,q1/2∩Λ̂T (θ̂(µ)) w.p.a.1.,
the above inequality implies that

∥m̂(θ̂(µ))−µ∥ ≤Op (q)Op (T −ξλ)+Op (qT ξλ−1).

Hence, ∥m̂(θ̂(µ))−µ∥ = op (T −1/ξ) and from the assumption qT −ξλ+ξ−1 → 0, we know that λ̂g (ϵT )
is an interior point in ΛT,q1/2 and in Λ̂T (θ̂(µ)) w.p.a.1. as long as ϵT → 0. Now consider one

arbitrary drifting to zero sequence ϵT , ϵT ∥m̂(θ̂(µ))−µ∥2 −Op (q)ϵ2
T ∥m̂(θ̂(µ))−µ∥2 = Op (qT −1)

implies that ϵT ∥m̂(θ̂(µ))−µ∥2 =Op (qT −1) if ϵT = op (q−1), since this is true for all such sequences,
we know ∥m̂(θ̂(µ))−µ∥ =Op (qT −1/2). □

Lemma SA-16. Under the assumptions of Corollary SA-1, ∥θ̂(µ)−θ(µ)∥ =Op (qT −1/2).

Proof of Lemma SA-16. The differentiability assumption implies that

m̂(θ̂(µ))−m̂(θ(µ)) = T −1
∑

t
Gt (θ(µ))⊤(θ̂(µ)−θ(µ)),

where

∥θ̄(µ)−θ(µ)∥ ≤ ∥θ̂(µ)−θ(µ)∥.

Denote G(θ) = EGt (θ), and the assumption ∥supθ∈Θ(T −1 ∑
t Gt (θ)⊤−EGt (θ)⊤)∥ = op (1) leads to

m̂(θ̂(µ))−m̂(θ(µ)) = (G(θ̄(µ))+op (1))⊤(θ̂(µ)−θ(µ)), where op (1) is defined in terms of |.|2 norm.
Thus the assumption that λmin(G(θ̄(µ))⊤G(θ̄(µ))) is bounded away from zero implies that

∥(θ̂(µ)−θ(µ))∥ ≤C∥m̂(θ̂(µ))−m̂(θ(µ))∥ ≤C {∥m̂(θ̂(µ))−µ∥+∥m̂(θ(µ))−µ∥},

then the rate follows as ∥m̂(θ̂(µ))−µ∥ =Op (qT −1/2) indicated by Lemma SA-15 and ∥m̂(θ(µ))−
µ∥ =Op (q1/2T −1/2) indicated by Lemma SA-11. □

Consider a first-order Taylor expansion of
∑

t m(Zt ,υθλ)/T for υ̂θλ =
(
θ̂(µ)⊤, λ̂⊤)⊤

and υθ(µ)0 =(
θ(µ)⊤,0⊤)⊤

, we have 0 =
(

0
−m̂

(
θ(µ)

) )
+ M̄µ

(
υ̂θλ−υθ(µ)0

)
, where

M̄µ =
(

0
∑T

t=1ρ1
(
λ̄⊤ĝµ,t

)
Gt (θ̄(µ))⊤/T∑T

t=1ρ1
(
λ̄⊤ĝµ,t

)
Gt (θ̄(µ))/T

∑T
t=1ρ2

(
λ̄⊤ĝµ,t

)
g t (θ̄(µ))ĝ⊤

µ,t /T

)
,

and θ̄(µ) and λ̄ are mean values converging to θ(µ) and 0 that actually differ from row to row of
the matrix M̄µ.

Lemma SA-17. Under the assumptions of Corollary SA-1, ∥M̄µ−Mµ∥ = op (1), for all µ.
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Proof of Lemma SA-17. We first show that ∥Ω̂(θ(µ),µ)−Ω(θ(µ),µ)∥ = op (1) with Ω̂(θ(µ),µ) =
1
T

∑
t (ĝµ,t −µ)(ĝµ,t −µ)⊤. This comes directly from the fact that

∥Ω̂(θ(µ),µ)−Ω(θ(µ),µ)∥ = ∥ 1

T

∑
t

(ĝµ,t −µ)(ĝµ,t −µ)⊤−Ω(θ(µ),µ)∥

≤
∥∥∥∥ 1

T

∑
t

(ĝµ,t − g t (θ(µ)))(ĝµ,t − g t (θ(µ)))⊤
∥∥∥∥+2

∥∥∥∥ 1

T

∑
t

(g t (θ(µ))−µ)(ĝµ,t − g t (θ(µ)))⊤
∥∥∥∥

+
∥∥∥∥ 1

T

∑
t

(g t (θ(µ))−µ)(g t (θ(µ))−µ)⊤−Ω(θ(µ),µ)

∥∥∥∥= op (1)

where

(1)
∥∥ 1

T

∑
t (ĝµ,t − g t (θ(µ)))(ĝµ,t − g t (θ(µ)))⊤

∥∥ = op (1) results from the fact that ∥ĝµ,t −
g t (θ(µ)))∥ ≤ b(Zt )∥θ̂(µ)−θ(µ)∥ and∥∥∥∥ 1

T

∑
t

(ĝµ,t − g t (θ(µ)))(ĝµ,t − g t (θ(µ)))⊤
∥∥∥∥≤ 1

T

∑
t

(b(Zt ))2∥θ̂(µ)−θ(µ)∥2.

(2)
∥∥ 1

T

∑
t (g t (θ(µ))−µ)(ĝµ,t − g t (θ(µ)))⊤

∥∥= op (1) results from the fact that∥∥∥∥ 1

T

∑
t

(g t (θ(µ))−µ)(ĝµ,t − g t (θ(µ)))⊤
∥∥∥∥

=
∥∥∥∥ 1

T

∑
t

(g t (θ(µ))−µ)(θ̂(µ)−θ(µ)))⊤Gt (θ̄(µ))⊤
∥∥∥∥

≤max
t

bt∥θ̂(µ)−θ(µ))∥
∥∥∥∥ 1

T

∑
t

Gt (θ̄(µ))⊤
∥∥∥∥=Op (q3/2T 1/ξ−1/2)

(3)
∥∥ 1

T

∑
t (g t (θ(µ))−µ)(g t (θ(µ))−µ)⊤−Ω(θ(µ),µ)

∥∥ = Op (q1/2T −1/2) as in the proof of
Lemma SA-14.

Next, ∥ 1
T

∑
t Gt (θ̂(µ))−EGt (θ(µ)))∥ = op (1) results from the triangular inequality and the facts

that

∥ 1

T

∑
t

Gt (θ̂(µ))−Gt (θ(µ)))∥ ≤
∑

t b(Zt )

T
∥θ̂(µ)−θ(µ)∥,

and that ∥ 1
T

∑
t Gt (θ(µ))−EGt (θ(µ)))∥ is bounded by assumption. Since the above arguments also

hold when we replace parts of θ̂(µ) by θ̄(µ), the final conclusion is then indicated once we notice
that ∥λ̄⊤ĝµ,t∥ = op (1), which is indicated by Lemma SA-15 and the fact that ∥Ω̂−Ω(θ(µ),µ)∥ =
op (1).

□

Proof of Corollary SA-1. We now can establish the expansion SA-1 to show the validity of As-
sumption 9. Note that by assumption Mµ is non-singular, and Lemma SA-17 implies that M̄µ is
also non-singular w.p.a.1. such that ∥M̄−1

µ −M−1
µ ∥ ≤ ∥M̄−1

µ ∥∥M̄µ−Mµ∥∥M−1
µ ∥ = op (1), and thus

p
T

(
υ̂θλ−υθ(µ)0

)=−(M−1
µ +op (1))

(
0,−

p
T (m̂

(
θ(µ)

)⊤−µ⊤)
)⊤

,
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with

M−1
µ =−

(
F−1
µ −F−1

µ G(θ(µ))⊤Ω(θ(µ),µ)−1

−Ω(θ(µ),µ)−1G(θ(µ))F−1
µ Ω(θ(µ),µ)−1 +Ω(θ(µ),µ)−1G(θ(µ))F−1

µ G(θ(µ))⊤Ω(θ(µ),µ)−1

)
and Fµ =−G(θ(µ))⊤Ω(θ(µ),µ)−1G(θ(µ)). Therefore, ∥(θ̂(µ)−θ(µ))−F−1

µ G(θ(µ))⊤Ω(θ(µ),µ)−1(m̂
(
θ(µ)

)−
µ)∥ = op (qT −1/2). The assumptions proposed in this analysis can be relaxed further if only for
the validity of Assumption 9. □

SA-2. LINK TO OPTIMAL DECISION RULE

We argue in this section that, similar to the results established in Andrews and Mikusheva
(2022), under model misspecification, we can also establish that the quasi-posterior can be
obtained as the limit of a sequence of posteriors under proper priors, and the resulting quasi-
Bayes decision rule can correspond to the pointwise limit of the sequence of Bayes decision rules.
To align with the setup in Andrews and Mikusheva (2022), we do not work directly with Pµ or
focus solely on the parameter θ(µ). Instead, We define a fixed coarse reference measurement P0

and consider the parameter pair (θ(µ),µ). While the construction in this subsection may appear
tedious, it is primarily introduced to facilitate this match.

Assumption SA-12. (Measure in the limit) There exists Z̃t , which is a maximal subset of Zt

such that the distribution of Z̃t does not change with respect to any (θ(µ),µ) ∈ Ξ. There exists
i.i.d. random sequence µt such that EPµ∗ (µt ) =µ∗. The random variable (g (Zt ,θ(µ))−µt , Z̃t ), t =
1, · · · ,T follows P0 that is invariant for all plausible pairs (θ(µ),µ) ∈Ξ.

The specification of the P0 matches the nonparametric Bayesian idea from Gallant and Hong
(2007) such that we can treat µt as a latent variable capturing the misspecification, and P0

remains invariant with respect to the plausible characteristics. While Pµ is a marginal measure
over Zt given µ, P0 can then be seen as a coarse joint measure concerning (Zt ,µt ) and it may not
be enough to deduce a marginal distribution for Zt or µt , which is similar to the case discussed
in Gallant and Hong (2007).

Assumption SA-12 essentially assumes that the measure (in the limit) of the sample moment
can be decomposed into two parts. The plausible term impacts one part, while the remaining
part is a measure invariant to (θ(µ),µ). For example, in the plausible IV model from Conley
et al. (2012), we may choose µt = γD⊤

t D t , Z̃t = (X ⊤
t ,W ⊤

t ,D⊤
t )⊤ and thus the distribution of∑

t [g (Zt ,θ(µ))−µt ] does not depend on the plausible term µ. Additionally, it is reasonable to
consider the deviations from the measure of ((g (Zt ,θ)−µt )⊤, Z̃⊤

t )⊤, i.e., P0, and in the spirit
of Andrews and Mikusheva (2022) and Kitamura et al. (2013) we consider perturbations in the
probability measure in Assumption SA-13. The subspace of score functions as

Tµ (P0) = {
f ∈ T (P0) : EP0

[
f (Zt )

(
g

(
Zt ,θ(µ)

)−µt
)]= 0

}
.

We define m̄(µ,θ) = EP0 ( f
(
g (Zt ,θ)−µt

)
), then for f ∈ Tµ (P0), by design m̄(µ,θ(µ)) = 0.
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Assumption SA-13. (Differentiability in quadratic mean) (g (Zt ,θ)−µt , Z̃t ) of size T follows
distribution P=PT, f , where the sequence PT, f converges to P0,∫ [p

T
(
dP1/2

T, f −dP1/2
0

)
− 1

2
f dP1/2

0

]2

→ 0.

While the score f controls the data distribution, our interest lies in the plausible pair (θ(µ),µ).
Denote ĝ (θ,µ) = 1p

T

∑T
t=1[g (Zt ,θ)−µ].

Assumption SA-14. (GP in the limit) Assume that under PT, f , ĝ (θ(µ),µ) weakly converges to a
Gaussian process with mean function m̄(·) and covariance function Σ(·), where the covariance
function is continuous and nonsingular for all pairs (θ,µ) and is consistently estimable.

Additionally, denote by g̃ (·) the limiting Gaussian process of ĝ (·) on (θ(µ),µ) pairs, CΞ the
space of continuous functions from Ξ to Rq . Let A be any linear functional A : CΞ→ Rq such
that Cov(A(g̃ (·)), g̃ (θ,µ)) is nonsingular for all (θ,µ). Let h⊥(·) = g̃ (·)−Cov(g̃ (·),ξA)Var(ξA)−1ξA

and µ⊥(·) = m̄(·)−Cov(g̃ (·),ξA)Var(ξA)−1 A(g̃ (·)), where ξA = A(g̃ (·)).

Analogue to arguments in Sections 3.1.2 from Andrews and Mikusheva (2022), the likelihood
function ℓ

(
µ⊥,θ(µ),µ; g̃ (·)) based on the observed data g̃ (·) factors as

ℓ
(
µ⊥,θ(µ),µ; g̃ (·))= ℓ(

µ⊥,θ(µ),µ;ξA
)
ℓ(µ⊥;h⊥),

and thus their equation (8) directly implies that a class of proportional priors over µ⊥ would give
rise to quasi-Bayes as a limiting case.

To establish that quasi-Bayes decision rules are pointwise limits of the corresponding Bayes
decision rules, it suffices to verify the conditions of Theorem 8 in Andrews and Mikusheva (2022).
The non-singularity of the covariance function is ensured, for instance, by Assumption 3.i).
The remaining conditions of their Theorem 8 require a loss function ℓ(a,θ,µ) that is uniformly
bounded, continuous, and strictly convex in a for each (θ,µ), along with a compact and convex
action space A . These requirements are met with appropriately chosen loss functions and action
spaces.

SA-3. ADDITIONAL SIMULATION RESULTS

From the Bayesian perspective, Sections SA-3.1.1 and SA-3.2.1 compare PGMM posteriors in
various settings and validate our results stated in Lemma 1. From the frequentist perspective,
we validate our BvM theorem and related coverage results. In paticular, with the linear IV
model setup, we illustrate the validity of Theorems 1-2. In addition to the linear moment case,
Section SA-3.2 addresses simulations involving nonlinear moments and illustrates the frequentist
justification of the unions of the credible regions constructed via quasi-posterior distributions,
as indicated by Theorems 3-4, by evaluating the frequentist coverage rates.



68

SA-3.1. Linear moments scenario.

SA-3.1.1. Baysian motivation.
This subsection compares PGMM posteriors between the case where µ≡ 0 (no model misspec-
ification) and µ draws from Fµ. The posteriors behave differently in these two cases; e.g., the
posteriors of the plausible characteristics in the presence of model misspecification tend to
deviate from zero instead of centering around zero as priors, which suggests that the shape of
the PGMM posterior provides meaningful information about the extent of misspecification.

The simulation exercises in this subsection draw plausible characteristics µ together with Zt

jointly and continue with the linear IV model from Section 3.1, and for simplicity, we consider
the case with one endogenous variable, no exogenous control variables, and a single instrument
variable. Therefore, θ = (α,βX ) ∈Θ and moment conditions g (Zt ,θ) = (1,D⊤

t )⊤
(
Yt −α+X ⊤

t βX
)

.
In this simulation exercise, with a given value of γ, Yt is generated with X t ,D t in the following
way:

Yt =α+X tβX + (1,D⊤
t )γ+εt ,

where ε consists of independent and identically distributed (i.i.d.) draws from N (0,σ2), and
X t and D t are the fixed in the simulation using the sample data as described in Section 3.1. By
the fact that µ = Eg (Zt ,θ), we have γ = (E(1,D⊤

t )⊤(1,D⊤
t ))−1µ, so once we draw µ from Fµ the

value of γ is also determined. In the simulation exercises in this subsection, we thus calibrate
σ2 to the data employed in Section 3.1, draw the value of µ = (µ1,µ2)⊤ from given Fµ, let γ =
(E(1,D⊤

t )⊤(1,D⊤
t ))−1µ, α= 0,βX =µ2/10, and then generate Yt and construct PGMM posteriors

based on Zt = (Yt , X t ,D t ).

Figure SA-12 plots the results based on the above simulation setup and compares the posteriors
in two cases. In the upper panel, µ is fixed at zero, and there is no model misspecification. The
lower panel uses DGPs with µ drawn from π(µ); therefore, µ varies instead of fixing at zeros.

In addition, Figure SA-12 shows that the highest posterior regions of βX tend to cover the
true values of βX used in the DGP. Corresponding to Lemma 1, the average coverage rates of the
95% PRT containing the values of θX used in the DGP are 0.99 and 0.96 for cases (a.) and (b.),
respectively.

SA-3.1.2. Frequentist validation.
Apart from Section SA-3.1.1 and SA-3.2.1, the remaining sections consider DGPs with fixed
plausible characteristics from a frequentist perspective. We continue with the linear model from
Section SA-3.1.1. We set α to be zero in this subsection and consider θ =βX ∈Θ. With a given
value of γ, Yt is generated similarly as before:

Yt = X tθ+D tγ+εt .

In this simulation exercise, we calibrate parameters to the 401(K) data employed in Conley et al.
(2012) so that X t and D t are fixed subsamples of size 9951 from the 401(K) data with X t being an
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FIGURE SA-12. Marginal priors (red dashed line) and PGMM marginal posteriors (green

solid line) of slope coefficient, βX (left panel), and plausible characteristic, µZ =µ2 (right panel),

resulting from the Section SA-3.1.1 linear IV model simulations. The upper panel (a.) represents a

correctly specified model with µ≡ 0, i.e., Fµ assigns all mass to 0. In contrast, the lower panel (b.)

reflects a plausible IV setting from Conley et al. (2012) with µ drawing from the prior of µ, π(µ) in

the simulation data generating process (DGP), i.e., Fµ coincides with π(µ). The red dashed curves

mark the marginal prior densities. The gray shadowed bars are the histograms of the realized

values of βX ,µ used in the DGPs of simulations, i.e., the bar in the subfigure (a.1) locates at point 0

as the value of µ is fixed at 0 in the upper panel simulation exercise. The green solid curves mark

the PGMM marginal posteriors, e.g., the green curves in the subfigure (a.1) correspond to the

marginal PGMM posteriors of µX .

indicator for 401(k) participation and D t being an indicator for 401(k) plan eligibility. ε consists
of independent and identically distributed (i.i.d.) draws from N (0,σ2), and the values of θ and
σ2 are obtained by regressing the net financial assets from the dataset on X t with D t as an
instrument using the 2SLS estimator and sample variance of the residuals.

SA-3.1.3. Validity of the Gaussian mixture limiting distribution.
This section validates the Gaussian mixture limiting distribution specified in Theorem 2 using the
linear IV model mentioned above. The simulated data, Zt = (Yt , X t ,D t ),1 ≤ t ≤ T , is generated as
follows: X t = D t +vt ,Yt = X tθ+D tγ+εt , where D t ’s are independently log-normally distributed
such that the natural logarithm of D t follows the standard normal distribution, vt ’s and εt ’s are
independently standard normally distributed, and Zt , vt , and εt are all independent of each
other.

We first proceed with the case k = q = 1, and the parameter of interest θ is fixed at zero. We
choose γ= 1/

p
T with T being the sample size to mimic local misspecification and use a local

Gaussian prior for µ and an independent flat prior for θ such that π(θ,µ) ∝ exp(−Tµ⊤µ/2).
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FIGURE SA-13. q = 2, with γ= (0.01,0.01)⊤. Left panel: contour plot of the (marginal) prior

density of µ = (µ1,µ2)⊤; Right panel: contour plot of the (marginal) quasi-posterior density of

µ= (µ1,µ2)⊤.

Figures SA-14 plots based on random draws of pairs of (θ,µ) from quasi-posterior distributions.
These quasi-posterior distributions are constructed using simulated data of various sample sizes.
The third and fourth columns of Figure SA-14 illustrate that the Gaussian mixture distribution
NT (θ,µ) closely approximates pT (θ,µ) when the sample size is relatively large, as the simulation
results show that the conditional quasi-posterior distribution of θ given µ closely resembles a
Gaussian. These findings are also shown in the QQ plots of Figure SA-14.

Another interesting observation is that in Figure SA-14, the fifth column indicates that the
region with the highest density of quasi-posterior distributions tends to concentrate in a smaller
area than the priors. This phenomenon is illustrated in Figure SA-13, where we explore a
simulation exercise similar to the settings in Figure SA-14, but with q = 2 and γ= (0.01,0.01)⊤.
Figure SA-13 demonstrates that in the presence of over-identification, the posterior distribution
may concentrate on an area of smaller dimension than the prior distribution.

SA-3.2. Nonlinear moments scenario.

SA-3.2.1. Baysian motivation.
We now consider a simulation exercise with non-smooth moment conditions, i.e. the IVQR model.
Inspired by the plausible IV model, we use invalid/plausible IV (D̃ t ) to introduce model misspec-
ification in this simulation exercise such that D̃ t = D t + γ̃

(
τ−1

(
Yt ⩽ατ+X ⊤

t βτ,X +W ⊤
t βτ,W

))
with D t being a valid instrumental variable. Therefore, when γ̃= 0 the model is correctly speci-
fied, and with non-zero γ̃’s, the moment conditions are misspecified. Specifically, this section
focuses upon the Median IV case with τ= 0.5 as in Section 3.1 with moment conditions

g (Zt ,θ) = (1,D̃⊤
t ,W ⊤

t )⊤
(
τ−1

(
Yt ⩽ατ+X ⊤

t βτ,X +W ⊤
t βτ,W

))
,

where Zt = (Yt , X t ,Wt ,D̃ t ), and θ = (ατ,βτ,X ,βτ,W ) ∈Θ.

Figure SA-15 is created similarly to Figure SA-12 with one instrumental variable. In the
simulation exercises in this subsection, X t , Wt , and D t are fixed using the sample data as
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FIGURE SA-15. Similar to Figure SA-12, marginal priors (red dashed line) and PGMM marginal

posteriors (green solid line) of slope coefficient, βX (left panel), and plausible characteristic, µD

(right panel), resulting from the Section SA-3.2.1 median IV model simulations. The upper panel

(a.) represents a correctly specified model with µ ≡ 0. In contrast, the lower panel (b.) uses

DGPs with µ drawn from the prior π(µ). The red dashed curves mark the marginal prior densities.

The gray shadowed bars are the histograms of the realized values of βX ,µ used in the DGPs of

simulations. The green solid curves mark the PGMM marginal posteriors.

described in Section 3.1. We first draw µ = (µ1,µD ,µW ) from Fµ, and the values of µ directly
determines the value of γ̃ via µ= Eg (Zt ,θ). In this simulation design, µ1 and µW are always set
to zero, and once we draw µ, we choose θ =µ/10, and Yt is generated in the following way:

Yt =ατ+X tβτ,X +Wtβτ,W +ε,

where ε consists of independent and identically distributed (i.i.d.) draws from N (0,σ2) with σ2

calibrated to the data employed in Section 3.1.

Similar to Figure SA-12, in the upper panel of Figure SA-15 µ ≡ 0, while in the lower panel,
µ used in the DGPs are drawn from the prior π(µ). The observed patterns are similar. The
average coverage rates of the 95% PRT are 0.99 and 0.92 for cases (a.) and (b.) in Figure SA-15,
respectively. In the absence of model misspecification in the upper panel of Figure SA-15, the
marginal posteriors of the plausible characteristics tend to cluster around zero, and the average
coverage rate is undoubtedly higher than the nominal rate due to the additional uncertainty
introduced. However, they start to deviate from zero as model misspecification is introduced in
the lower panel.

SA-3.2.2. Frequentist validation.
This subsection revisits an median IV simulation example from Chernozhukov and Hong (2003)
with slight modifications to introduce model misspecification. The Monte Carlo Simulation
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γ T τ Methods βτ,1 βτ,2 βτ,3 γ T τ Methods βτ,1 βτ,2 βτ,3

1 300 0.2 0 0.946 0.941 0.029 1 300 0.2 1 0.985 0.981 0.924
1 300 0.5 0 0.675 0.676 0.34 1 300 0.5 1 0.988 0.97 0.921
1 100 0.2 0 0.781 0.725 0.273 1 100 0.2 1 0.928 0.929 0.964
1 100 0.5 0 0.554 0.549 0.454 1 100 0.5 1 0.996 0.968 0.94
0 300 0.2 0 0.917 0.935 0.914 0 300 0.2 1 0.994 0.996 0.993
0 300 0.5 0 0.925 0.919 0.916 0 300 0.5 1 0.965 0.96 0.969
0 100 0.2 0 0.941 0.947 0.941 0 100 0.2 1 0.995 0.994 0.997
0 100 0.5 0 0.903 0.917 0.901 0 100 0.5 1 0.959 0.969 0.971

TABLE SA-2. This table illustrates the average coverage rates of sets containing the true values

of βτ,i ’s, and the rates are displayed in the columns labeled “βτ,i ”. The column labeled “γ” shows

the values of γ used in the DGPs, labeled “T ” shows the value of the sample size, labeled “τ” shows

the corresponding quantiles, labeled “Methods” outlines the estimation procedure, with the value

of 0 referring to the [CH] method and the value of 1, referring to the PGMM method. The [CH]

intervals are constructed with flat priors over θτ’s, and the PGMM intervals are constructed with

flat priors for θτ’s and independent local Gaussian priors N (0, I /T ) for plausible characteristics.

Example II established by Chernozhukov and Hong (2003) is:

Yt =α+X ⊤
t β+ut ,ut =σ(X t )εt , σ(X t ) = (1+

3∑
j=1

X t , j )/5,

where there are no endogenous variables, X t , j ’s are independently log-normally distributed such
that the natural logarithm of X t , j follows a standard normal distribution, εi ’s are independently
standard normally distributed and are independent of X t , j ’s and θ = (α,β). They consider the
following moment conditions for the median g (Zt ,θ) = (1, X ⊤

t )⊤
(
0.5−1

(
Yt ⩽α+X ⊤

t β
))

.

We modify the above DGP to introduce model misspecification in two ways: by adjusting the
credibility of the instrument variables and the rank invariance (or similarity) used in the IVQR
with discrete (or bounded continuous) treatment variables so that treatment status should not
impact the underlying conditional distribution. The former situation resembles the plausible lin-
ear IV model in that the exclusion restriction is relaxed. We substitute ut with ũt =σ(X t )εt +γX 2

t ,3
to include plausible IVs, with γ evaluating the credibility of IVs. In the latter case, we consider the
following DGP with potentially missing variables X t such that Yt =α+D⊤

t β+γD t X t +εt , where
D t follows an independent and identically distributed Bernoulli distribution with a success rate
of 1/2. For both cases, we consider the following moment conditions used for estimating the
parameters concerning the τ-quantile: g (Zt ,θτ) = (1, X ⊤

t ,W ⊤
t )⊤

(
τ−1

(
Yt ⩽ατ+X ⊤

t βτ
))

, where
Zt = (Yt , X t ), θ = (ατ,βτ) ∈Θ.

Table SA-2 is constructed with simulated data generated under the first DGP relaxing the
exclusion restriction, while Table SA-3 is built under the latter one. Both tables compare average
coverage rates of sets constructed using different approaches containing true parameter values,
and they also demonstrate the validity of Theorems 3 and 4.
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γ T τ Methods βτ γ T τ Methods βτ

0 300 0.5 -1 0.9629 1 300 0.5 -1 0
0 300 0.5 0 0.9572 1 300 0.5 0 0.0009
0 300 0.5 1 0.9780 1 300 0.5 1 0.9555
0 300 0.8 -1 0.9573 1 300 0.8 -1 0
0 300 0.8 0 0.9574 1 300 0.8 0 0.0893
0 300 0.8 1 0.9796 1 300 0.8 1 0.9009
0 100 0.5 -1 0.9666 1 100 0.5 -1 0.0439
0 100 0.5 0 0.9653 1 100 0.5 0 0.1112
0 100 0.5 1 0.9807 1 100 0.5 1 0.9587
0 100 0.8 -1 0.9529 1 100 0.8 -1 0.0063
0 100 0.8 0 0.9455 1 100 0.8 0 0.4694
0 100 0.8 1 0.9754 1 100 0.8 1 0.9659

TABLE SA-3. Similar to Table SA-2, the value of −1 in the column labeled “Methods” refers to

the IVQR method (see Chernozhukov and Hansen (2005)). The [CH] intervals are constructed with

flat priors over θ’s, and the PGMM intervals are constructed with flat priors for θ’s and independent

local Gaussian priors N (0,10I /T ) for plausible characteristics.

Table SA-2 compares results with and without accounting for model misspecification. In the
simulation exercise outlined in Table SA-2, the parameters θ = (α,β) in the DGP are set equal to
the null vector, and thus βτ’s are also null vectors following the settings in Chernozhukov and
Hong (2003). The table shows the average coverage rates for the true βτ value in sets from two
quasi-posterior distributions, with and without assuming model misspecification. One set is
created using 0.025 to 0.975 sample quantiles obtained from quasi-posterior distributions for
βτ,i ’s without assuming model misspecification (refer to the quasi-Bayesian approach outlined
in Chernozhukov and Hong (2003), denoted as [CH]), and another set is constructed from PGMM
quasi-posterior. The sets resulting from PGMM approach are built as follows: we select simulated
βτ,i ’s corresponding to pre-selected plausible characteristics (µ1,µ2,µ3,µ4)⊤ with average values∑

i µi /4 close to the 0.1-0.9 sample quantiles of priors, then we create a set using 0.025 to 0.975
sample quantiles of βi ’s selected corresponding to a specific value of plausible charateristics,
and the final set is the union of all those sets.

In Table SA-2, when γ= 0, both techniques produce comparable outcomes. However, when
γ = 1, [CH] sometimes results in a strikingly low coverage rate for βτ,3 (for example, when
τ= 0.2) while incorporating local plausible characteristics enhances the coverage rate. Table
SA-3 explores a different DGP from Table SA-2 with θ = (0,1)⊤ in the DGP and thus βτ = 1;
additionally, Table SA-3 also presents findings regarding the 95% confidence sets using the IVQR
procedure (see Chernozhukov and Hansen (2005)). We observe similar patterns in Table SA-3 as
in Table SA-2.
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