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Abstract

We propose a nonlinear framework to study the dynamic transmission of aggregate

and idiosyncratic shocks to household income that exploits both macro and micro data.

Our approach allows us to examine empirically the following questions: (a) How do

business-cycle fluctuations modulate the persistence of heterogeneous individual his-

tories and the risk faced by households? (b) How do aggregate and idiosyncratic

shocks propagate over time for households in different macro and micro states? (c)

How do these shocks shape the cost of business-cycle risk? We develop new identifica-

tion and estimation techniques, and provide a detailed empirical analysis combining

macro time series for the U.S. and a time series of household panels from the PSID.
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1 Introduction

In this paper, we propose a nonlinear framework to study the dynamic transmission of
aggregate and idiosyncratic shocks to income by leveraging both macro and micro data.
Our approach makes it possible to empirically examine how business-cycle fluctuations
modulate the persistence of heterogeneous individual histories and the risk faced by
households. We also consider questions such as how aggregate and idiosyncratic shocks
propagate over time for units in different macro and micro states, and how these shocks
contribute to the cost of business-cycle risk. Answering these questions is important. They
are essential to documenting the dynamics of income inequality over the business cycle.
Furthermore, how the incomes of heterogeneous agents respond to macro and micro
shocks is key for consumer and firm behavior, and for the design of optimal monetary
and fiscal policies (Bhandari, Evans, Golosov, and Sargent, 2021).

The literature on income risk has uncovered significant nonlinearities in the dynam-
ics of individual incomes (Arellano, Blundell, and Bonhomme, 2017; Guvenen, Karahan,
Özkan, and Song, 2021) and in their variation over the business cycle (Guvenen, Ozkan,
and Song, 2014). Moreover, a growing recent literature investigates the heterogeneous ef-
fects of monetary policy shocks on individual-level outcomes (Holm, Paul, and Tischbirek,
2021; Andersen, Johannesen, Jørgensen, and Peydró, 2023; Amberg, Jansson, Klein, and
Rogantini Picco, 2022). Yet, a methodology for modeling the interaction between micro
and macro shocks capable of integrating non-linearities in the life-cycle and business-cycle
dynamics of income is still lacking. This is our main contribution.

We consider a nonlinear Markovian micro income process with a macro state variable
of the following form:

ηit = Qη(ηi,t−1,Zt,Zt−1,uit),

Zt = QZ(Zt−1,Vt),

where uit and Vt are micro and macro shocks, and ηit and Zt are potentially unobserved.
A measurement system connects these two latent variables to observed micro and macro
data, specifically, a flexible persistent-transitory model for the micro states and a dynamic
factor model for the macro states. Our triangular formulation has the potential to al-
low for feedback from the micro to the macro level, as Zt can incorporate distributional
characteristics of the micro data. The assumption underlying the triangular structure is
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atomicity, meaning that no single individual unit influences the aggregate state.
Based on our income process we will highlight two key quantities. The first one is the

elasticity of individual persistent earnings to the aggregate business-cycle state Zt:

βit =
∂ηit

∂Zt
.

In our setup, βit is a measure of a household’s exposure to shocks to the aggregate state
that is heterogeneous along both the income distribution and business-cycle conditions.
In addition, βit may vary with the idiosyncratic shock uit, and so the impact of an aggregate
shock may differ depending on idiosyncratic events (such as a job loss or a promotion).1

The second quantity is income persistence:

ρit =
∂ηit

∂ηi,t−1
.

Here, ρit is a measure of nonlinear persistence (Arellano et al., 2017, ABB) that may vary
depending on the position in the income distribution and the idiosyncratic shocks hitting
the household. Moreover, unlike in ABB, our model allows for the aggregate state to affect
income and, thus, for the shape of persistence to be different in good or bad times.

Documenting how βits and ρits vary across income histories and over the business
cycle allows us to paint a rich picture of the interaction between individual and aggregate
income dynamics. Our model also allows us to flexibly measure how features of the
income process such as (conditional) dispersion and skewness depend on business-cycle
conditions. Since the model completely specifies the law of motion of individual income
ηit and the aggregate state Zt, it can be used for impulse response analysis and to quantify
the cost of both micro and macro sources of income risk, as we illustrate empirically.

We study the nonparametric identification of this model bringing together macroe-
conometric and microeconometric techniques. The micro side builds on ABB. The macro
side relies on identification results for factor models estimated from time series aggregates
(Stock and Watson, 2016). To combine the two parts, we create a time series of short panels,
such that each panel is representative of the economy in that period. Thus, identification

1Our measure is different from, but related to, others in the growing empirical literature on the hetero-
geneous effects of recessions. For example, Guvenen, Schulhofer-Wohl, Song, and Yogo (2017) document
variation in individual income exposure to aggregate income—referred to as ’worker betas’—across age and
income groups; while Patterson (2023) examines how these heterogeneous exposures relate to differences
in marginal propensities to consume across demographic groups.
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relies on three dimensions of our combined dataset: large cross-sections, short individual
panels, and long time series spanning sufficient cyclical fluctuations.

We propose an approach to estimation and inference that uses a flexible parametric
version of the model and can be implemented with stable simulation-based algorithms.
This approach was first introduced in Arellano and Bonhomme (2016) and was adapted to
a setup with time-varying latent variables in ABB. Here it is further extended to a long time
series of short panels involving both micro and macro latent variables. Our stochastic EM
algorithm iterates between draws of the latent variables from their posterior distributions
evaluated at current parameter values, and updates of the parameters from quantile
regressions based on those draws. Furthermore, the method of inference we develop is
robust to forms of cross-sectional and unit-level dependence in micro shocks uit that arise
from unobserved common factors and realistic sampling designs.

We also develop a methodology for impulse response function analysis in our nonlinear
context where we want to measure the importance of macro and micro shocks and their
interactions. We start by considering an experiment in which we directly perturb a state
variable at some point in time. We then compare the trajectory of the system following
the perturbation with a baseline trajectory in the absence of perturbation. Since we wish
to obtain comparability of impulse responses across households with different processes,
we need to consider ways of introducing comparable perturbations. We do so via a set
of rules that map perturbations to a common system of units, and we show that different
perturbation experiments can be associated with different formulations of local shocks.

We take our model to quarterly macro time series data for the U.S. and a time series of
panels that we construct from the Panel Study of Income Dynamics (PSID) spanning the
period 1970-2019, thus covering seven recessions. PSID waves are annual up to 1997 and
biennial afterwards. For consistency of the microdata, we then form sequences of biennial
subpanels of four waves each covering all the years available, in the spirit of Storesletten,
Telmer, and Yaron (2004). Compared to standard long panel approaches, this time series of
panels approach has the advantage of mitigating concerns over the representativeness of
the data. In this paper, our primary focus is on disposable household income net of taxes
and transfers. However, for comparability with other studies, we also present estimates
based on male earnings and household earnings before taxes and transfers.2

2The last results are limited to units with positive earnings. The share of households with zero earnings
stays below 2% for most of the period, rising slightly during the Great Recession. For men, zero earners
remain under 6% until the Great Recession, when the rate nears 8%. See Figure 2 and its discussion.
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We leave to future work the estimation of the transmission of aggregate and idiosyn-
cratic income shocks to consumption, although this is a natural extension of the analysis
of nonlinear income and consumption dynamics in the PSID developed in Arellano et al.
(2017) and Arellano, Blundell, Bonhomme, and Light (2023).

Empirical results. Our analysis yields a number of novel empirical insights.
To begin, our results illustrate the asymmetric impact of the business cycle on income

persistence. Specifically, income persistence ρit increases for low-income households and
decreases for high-income households during recessions. That is, during a downturn, it
is harder for low-income earners to leave the low-income state, whereas for high-income
earners remaining high-income becomes more difficult. The cyclical variation we find in
the persistence of past income histories coexists with the ample variability along income
and micro-shock distributions uncovered by ABB.

Our results also highlight the presence of heterogeneous exposures to aggregate shocks.
The coefficients βit tend to be higher when associated with bad idiosyncratic shocks.
Moreover, we find that βits are countercyclical: they are higher in recessions and lower in
expansions. This is a key finding because the cyclical behavior of income elasticities to the
macro state—particularly the self-amplifying nature of negative aggregate shocks—has
major implications for the cost of aggregate income risk, as we argue below.

In addition, we document two main facts about income skewness. First, we find that
left skewness is countercyclical, consistent with the findings in Guvenen et al. (2014).
Second, we find that skewness decreases with income at any point in time, consistent with
the findings in ABB, but differentially so depending on the phase of the business cycle.
This tale of two skewnesses is a clear reflection of the nonlinear transmission of micro and
macro shocks. In this and other dimensions, business-cycle variability is most pronounced
for male earnings and, to a lesser extent, for household earnings and disposable income,
in that order—that is, from the income measure with the least insurance to the one with
the most—but the patterns are qualitatively similar for all three measures.

Concerning impulse response functions, we find a large direct impact of macro shocks
but with generally short-lived effects. These impacts, however, are highly heterogeneous
across income measures (larger for male earnings, smaller for disposable income) and
along the persistent income distribution (larger at the bottom, smaller in the middle), and
they interact with idiosyncratic uncertainty by compounding the negative consequences
of bad micro shocks. In contrast, micro impulse responses decay slowly, with different
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degrees of persistence depending on the initial level of income. In fact, as we show below,
there is a tight link between impulse responses and βits and ρits.

Finally, we use our framework to quantify the cost of both macro and micro sources
of risk. For macro risk, we compute the (per cent) compensating variation that equalizes
the expected lifetime utility of income with and without macro shocks (as in Lucas, 1987,
2003), where expectations come from our estimated income process. In this exercise, the
cyclical behavior of the nonlinear income exposure to macro shocks βit is a key determinant
of the cost of business cycles. In the presence of empirically plausible amplification effects,
the yearly cost of macro risk can be as high as 5 percent of income, whereas it is negligible
under a linear transmission of macro shocks. This is a novel channel through which macro
uncertainty can lead to welfare losses at the household level, distinct from curvature in
the utility function. Although as expected the cost of micro risk is higher, for many units
(mainly young and low-income) macro shocks explain a large fraction of the total cost of
risk. It is worth emphasizing that an income process linear in aggregate shocks would
miss all of the rich cyclical patterns documented here. Thus, a core lesson from our paper
is the importance of accounting for nonlinearities in βit when the goal is to study the
consequences of aggregate fluctuations.

Selected literature. Our paper contributes to several strands of the literature. First, we
build on the vast literature on income dynamics, both with and without business cycles,
e.g., Gottschalk and Moffitt (1994, 2009), Meghir and Pistaferri (2004), Blundell, Pistaferri,
and Preston (2008), Browning, Ejrnæs, and Álvarez (2010), Altonji, Smith, and Vindangos
(2013); see Blundell, Bollinger, Hokayem, and Ziliak (2024) for a comprehensive review.
Within that body of work, our paper is most closely related to Storesletten et al. (2004),
Guvenen et al. (2014), Arellano et al. (2017), Guvenen, McKay, and Ryan (2023), Halvorsen,
Holter, Ozkan, and Storesletten (2024), Guvenen, Pistaferri, and Violante (2022), and the
multi-country GRID project. Relative to this work, we are the first to develop a framework
capable of integrating aggregate shocks and rich nonlinear dynamics at the micro level.

Second, we contribute to the literature on estimating heterogeneous agents models us-
ing micro data (Arellano and Bonhomme, 2017; Liu and Plagborg-Møller, 2023; Fernández-
Villaverde, Hurtado, and Nuño, 2023). Compared to them, we offer a principled approach
to building nonlinear reduced forms for that class of models when agents face potentially
latent macro-level uncertainty. More generally, we add to an early literature on the combi-
nation of household survey data with time series data (Tobin, 1950; Chetty, 1968; Maddala,
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1971) and to recent work on the econometrics of models with aggregate shocks (Hahn,
Kuersteiner, and Mazzocco, 2020; Almuzara and Sancibrián, 2024) by developing novel
tools for identification analysis and estimation in a time series of panels framework.

An important reference is Chang, Chen, and Schorfheide (2024), who propose func-
tional vector autoregression methods to combine macro aggregates with repeated cross-
sections. In a setup with both macro and micro data, the effects of macro shocks at the unit
level and their impact on cross-sectional distributions are distinct but related empirical
objects. While we focus on the former, Chang et al. (2024) aim at the latter. From this per-
spective, our papers are complementary. Another recent related reference is Sargent and
Selvakumar (2025), who propose a dynamic mode decomposition method to study distri-
butional dynamics of income and consumption. Compared to both papers, a distinctive
feature of our work is the use of panel data to analyze household dynamics.

Lastly, our empirical results speak to a vast macro literature on inequality and aggregate
fluctuations (e.g., Krusell and Smith, 1998; Krueger, Mitman, and Perri, 2016; Ahn, Kaplan,
Moll, Winberry, and Wolf, 2018; Bhandari et al., 2021), and to work that seeks to quantify
the welfare cost of business cycles (Lucas, 1987, 2003; Storesletten, Telmer, and Yaron,
2001; Otrok, 2001; Barlevy, 2004; Galí, Gertler, and López-Salido, 2007; Krebs, 2007). In
particular, we document new empirical patterns about the interaction between cyclical
variation and nonlinearities in the income processes that have the potential to amplify the
welfare consequences of recessions and expansions.

In summary, our paper integrates these different strands by building a semi-structural
framework with nonlinear micro dynamics and macro shocks, offering a unified approach
to study the interplay between individual behavior and aggregate fluctuations.

Outline. The paper is organized as follows. Section 2 outlines our framework of analysis
and the key objects of empirical interest. Section 3 introduces the statistical population by
means of a time series of panels and studies identification. Section 4 details our estimation
strategy. In Section 5, we present empirical results on nonlinear persistence, exposure to
aggregate shocks, and skewness over the business cycle. Section 6 develops methodology
for nonlinear impulse response functions of macro and micro shocks, while Section 7
focuses on quantifying the idiosyncratic and aggregate components of income risk. Section
8 concludes. Additional material can be found in the Supplemental Appendix.
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2 Framework

In this section we describe our framework of analysis that combines time series aggregates
with longitudinal micro-level survey data. While our interest is on the impact of macro
shocks on nonlinear income risk, our approach provides a basis to build rich nonlinear
reduced forms for heterogeneous agents models with both macro and micro uncertainty.

2.1 Model

We model log income yit of household i at time t as the sum of a persistent component ηit

and a transitory component εit,

yit = ηit + εit.

While the researcher observes log income yit, the two components ηit and εit are latent.3

Following Arellano et al. (2017, ABB), the persistent component is a flexible first-order
Markov process, the transitory component is serially independent (using biennial obser-
vations), and both processes may depend on covariates xit such as the age of the household
head. However, unlike ABB, our focus is on understanding how aggregate conditions
impact income trajectories. For this purpose, we introduce a time series aggregate Zt, a
macro state variable that affects ηit and εit, and that we will infer from aggregate time
series data.

Persistent component. We specify the persistent component as

ηit = Qη(ηi,t−1,Zt,Zt−1, xit,uit). (1)

In (1), Qη is strictly increasing in its last argument and the shock uit is i.i.d. uniform on
(0, 1), independent of (ηi,t−1,Zt,Zt−1, xit). Hence, for all τ ∈ (0, 1), Qη(ηi,t−1,Zt,Zt−1, xit, τ) is
the conditional τ-quantile of ηit. This model allows for a general nonlinear relationship
between the persistent income component ηit and its various determinants: lagged income
ηi,t−1, the aggregate factor Zt, covariates xit, and idiosyncratic shocks uit.

3We build on a long tradition that uses panel data to decompose income into persistent and transitory
components (Hause, 1977; Lillard and Willis, 1978; MaCurdy, 1982); see Arellano (2014) for a survey.
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To aid interpretation, it is useful to consider the following special case of Equation (1):

ηit = ρηi,t−1 + γηi,t−1Zt + δZt + g(Zt,uit)︸   ︷︷   ︸
=ζit

, (1’)

where for simplicity we have omitted the dependence on Zt−1. The quantityζit = g(Zt,uit) is
a composite income shock, measured in log income units, which exhibits aggregate variation
due to the presence of Zt and idiosyncratic variation driven by uit.

In model (1’), the impact of a marginal change in the aggregate state Zt on the persistent
component of income (the household’s aggregate exposure βit) can be decomposed as

∂ηit

∂Zt
= γηi,t−1 + δ︸     ︷︷     ︸

income heterogeneity

+
∂g(Zt,uit)
∂Zt︸      ︷︷      ︸

shock distribution

.

The first term shows that the impact of an aggregate shock can vary along the income
distribution, a point highlighted in an extensive literature in macroeconomics; the second
shows that aggregate shocks may alter the distribution of income shocks, e.g., by affecting
their variance (as in Storesletten et al., 2004) or skewness (as in Guvenen et al., 2014).4

Compared to (1’), which permits interactions between Zt and past income ηi,t−1 and
between Zt and the rank uit, model (1) allows for a third type of interaction between past
income ηi,t−1 and the shock uit. Model (1) is therefore better able to capture nonlinearities
in income persistence, including the observation from ABB that different shocks to the
persistent component may be associated with different degrees of persistence. This is in
addition to the rich life-cycle patterns and the unrestricted relationship between macro
and micro responses that model (1) can generate. The latter plays a key role in empirically
capturing the shape of individual impulse responses to aggregate shocks.

Transitory component and initial condition. We specify the transitory component as

εit = Qε,t(xit, vit), (2)

4For a special case consider g(Zt,uit) = σ(Zt)q(uit), where ∂g(Zt,uit)
∂Zt

=
∂σ(Zt)
∂Zt

q(uit) reflects the impact of Zt on

the variance of the composite shock distribution σ2(Zt).
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with Qε,t strictly increasing in its last argument, and vit an i.i.d. shock, uniform on (0, 1)
and independent of xit and uit. The function Qε,t may vary over time in unrestricted ways
reflecting general aggregate effects (coming from Zt or other factors) on transitory income
risk. Our specification can also accommodate non-Gaussianity in the conditional density
of transitory shocks. In practice, εit will potentially be a mix of substantive transitory
shocks and measurement error, and without further assumptions our approach will not
allow us to distinguish between the two. For this reason, in our empirical analysis we will
mostly focus on interpreting the properties of the persistent component.

Lastly, we specify the initial condition of the persistent income process as

ηi,t0
= Qinit,t0

(xi,t0
, νi,t0

),

with Qinit,t0
strictly increasing in its last argument, and νi,t0

uniformly distributed on (0, 1),
and independent of xi,t0

, uit and vit. With a similar rationale as for Qε,t, we let Qinit,t0
depend

flexibly on the initial time period t0 (which may differ across individuals).
Since we permit general time-variation in both the transitory component and the initial

condition, other factors beyond the business-cycle state Zt can influence the evolution of
income in our model. Thus, as Qε,t and Qinit,t0

reflect a mix of business-cycle and other
factors, we will interpret them as rich time-varying “controls”, our chief goal being instead
to document the dynamics of the persistent component captured by Qη.

Macro state variable. The unobservable aggregate state Zt is estimated from observables
Wt by relying on a linear dynamic factor structure:

Wt = ΛZt + et,

Zt = ΦZt−1 + Σ
1/2Vt = QZ(Zt−1,Vt), (3)

with Vt an i.i.d. standard normal vector of shocks independent of et at all lags and leads,
and with the elements of et specified as mutually independent Gaussian autoregressive
processes. In this formulation, the aggregate state Zt will typically display persistence,
reflecting the dynamic impact of current and past aggregate shocks {Vt−ℓ}ℓ≥0.5

In our empirical analysis, Wt consists of variables that are informative about aggregate

5Since Zt can be a vector, the restriction to a first-order process in (3) is without loss of generality—any
VAR(p) can be cast as a VAR(1) in companion form. Our setting also accommodates richer processes with
heteroskedasticity and nonlinearities, provided QZ can be identified from the time series Wt (see Section 3).
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fluctuations (e.g., GDP and the unemployment rate) while Zt is a parsimonious summary
indicator of the state of the business cycle.6 One interpretation of Zt draws on Angeletos,
Collard, and Dellas (2020) who find that a single serially uncorrelated process, what they
call the main business cycle (MBC) shock, accounts for the largest share of the unpredictable
variation in each of the variables Wt at business cycle frequencies. This MBC shock is not a
specific structural shock (e.g., TFP or demand), but possibly a mix of shocks that produce
consistent impulse-response patterns across cyclical variables. In that light, we can view
the shock Vt in (3) as an approximation to the MBC shock, and the business cycle state Zt

as a persistent process that captures the cumulative effect of MBC shocks over time.7

Macro-micro feedback. We can view Equations (1) and (3) as a nonlinear VAR(1) model
for {ηit}i and Zt, where i indexes the relevant time-t cross-sectional population—the precise
notion is discussed in Section 3. What remains is to specify the link between the macro
and micro sides. We impose two restrictions formalized in Assumption 3 below.

First, conditional on Zt, the aggregate data Wt carry no extra information about shocks
uit to the dynamics of ηit. This is analogous to Liu and Plagborg-Møller (2023, Assumption
1) and implies that Zt is a sufficient statistic of the macro data for micro-level persistent
dynamics. Second, we impose that individual past income shocks do not affect Zt. It is
important to highlight here that our model does not rule out feedback from the micro to
the macro side. We can accommodate such feedback provided it is channeled through
aggregate summaries of the micro state distribution. In that case, one could augment Wt

with moments from the time-t earnings distribution and redefine Zt accordingly. Instead,
what we require is that no single unit in the sample has aggregate effects, that is, that units
are atomistic. In Supplemental Appendix A, we use a stylized example to illustrate how
the equilibrium conditions from standard heterogeneous agents models with aggregate
shocks can be cast in the form of (1) and (3), and how atomicity is to be interpreted.

To summarize, our framework can capture rich aggregate dynamics and macro-micro
interactions. The limit is statistical rather than conceptual: as shown in Section 4, estima-

6The idea of extracting a low-dimensional summary of the covariation of multiple economic time series
is at the core of the concept of business cycle (Burns and Mitchell, 1946). The use of linear factor models for
that purpose also has a long history in economics; see Stock and Watson (2016) for a survey.

7One difference is that Angeletos et al. (2020) recover the MBC shock by maximizing the forecast error
variance decomposition of Wt over a band of business-cycle frequencies, whereas we recover our shock Vt
(and the state Zt) by first applying a band-pass filter to Wt (tailored to business-cycle frequencies) and then
using dynamic factor techniques. Empirically, IRFs of Wt to Vt are quantitatively similar to IRFs to the MBC
shock, albeit slightly less persistent. See Supplemental Appendix E.3 for a comparison.
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tion precision depends on the time series length T, and a high-dimensional Zt can quickly
exhaust the degrees of freedom offered by a short time series.

2.2 Objects of empirical interest

A primary goal of the empirical analysis is to quantify the effect of aggregate shocks on
nonlinear income risk. Our framework allows us to recover several quantities of interest.
A first quantity is the following measure of nonlinear persistence which extends the ABB
persistence to a setup with aggregate shocks:

ρ
(
uit, ηi,t−1,Zt,Zt−1, xit

)
=
∂Qη(ηi,t−1,Zt,Zt−1, xit,uit)

∂ηi,t−1
. (4)

That is, persistence is measured by how a change in the micro state ηi,t−1 affects its next-
period value. In a linear autoregressive model, ρ(uit, ηi,t−1,Zt,Zt−1, xit) = ρ is constant and
equal to the autoregressive root of the process. In contrast, in our nonlinear process, this
measure is state-dependent: persistence may vary with the past position in the income
distribution ηi,t−1, with aggregate conditions Zt and Zt−1, and with covariates (e.g., age) xit.

A key feature of the measure ρ(uit, ηi.t−1,Zt,Zt−1, xit) is that it captures how persistence
varies with the micro shock uit, and how uit interacts with the remaining determinants
of persistent income. In micro panels, a robust finding (first documented in ABB) is that
persistence decreases for good-shocks/low-η and bad-shocks/high-η combinations. This
reflects the fact that a good shock arriving in a low-income state has sometimes the power
to erase a bad income history; the unlucky reverse holds for high-η households reached
by a bad u. This feature is absent from linear income processes. But the novel framework
of this paper adds an extra layer. In (4), the entire shape of ρ as a function of uit and
ηi,t−1—the intensity with which past income histories are wiped out by big shocks—can
change with the aggregate state of the economy Zt. Our empirical analysis in Section 5
presents evidence of business cycle variation in nonlinear persistence.

A second key quantity is the persistent income nonlinear exposure to aggregate shocks:

β
(
uit, ηi,t−1,Zt,Zt−1, xit

)
=
∂Qη(ηi,t−1,Zt,Zt−1, xit,uit)

∂Zt
. (5)

This measure captures how the exposure of a household to the aggregate state varies with
the determinants of persistent income ηit. In particular, the aggregate exposure may vary
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along the persistent income distribution ηi,t−1, over the life-cycle xit, or as a function of the
idiosyncratic shock the household is hit with uit. It may also display cyclical patterns as
it depends on the aggregate states Zt and Zt−1. It is worth noting that this measure is not
available in models of income risk that exclude macro shocks, and in most specifications
that do include aggregate uncertainty, it is typically restricted to be constant, thus ruling
out cyclical exposures and interactions with micro-level states and shocks.

A third quantity of interest is the following measure of conditional skewness:

sk
(
ηi,t−1,Zt,Zt−1, xit

)
=

[
Qη(ηi,t−1,Zt,Zt−1, xit, 0.9) −Qη(ηi,t−1,Zt,Zt−1, xit, 0.1)

]−1
(6)

×

[
Qη(ηi,t−1,Zt,Zt−1, xit, 0.9) +Qη(ηi,t−1,Zt,Zt−1, xit, 0.1) − 2Qη(ηi,t−1,Zt,Zt−1, xit, 0.5)

]
.

This is the Kelley skewness of the predictive distribution of ηit. In micro panels, skewness
tends to be decreasing in past ηi,t−1, that is, income risk is tilted to the upside for the low-η
and to the downside for the high-η. As for persistence, the novelty of our paper is to allow
us to trace how skewness changes with the aggregate state of the economy Zt (and Zt−1).
How skewness varies with Zt is a paramount empirical question. Guvenen et al. (2014), for
example, find that recessions have a sizable negative impact on the skewness of one-year
income growth. Our framework enhances previous analyses in various directions. First,
it allows us to quantify the cyclical patterns of persistent income risk directly, without the
need to proxy it by income changes that complicate imputing the effect of specific macro
shocks. Second, it allows us to explore the role of the household’s position in the income
distribution and in the life cycle. Thus, our approach provides a unified treatment of the
two types of income skewness that have been highlighted in the literature: across the
income distribution (indexed by ηi,t−1) and over the business cycle (indexed by Zt).

8

Beyond exploring the cyclical behavior of nonlinear income risk, our setup allows us to
recover impulse response functions (IRF) to both macro shocks (i.e., a shock to Zt such as
a recession or boom) and micro shocks (i.e., a shock uit such as a promotion or demotion),
as we discuss in Section 6. Finally, our framework allows us to quantify the contribution

8 Similarly, we can define measures of conditional dispersion and kurtosis:

disp
(
ηi,t−1,Zt,Zt−1, xit

)
= Qη(ηi,t−1,Zt,Zt−1, xit, 0.9) −Qη(ηi,t−1,Zt,Zt−1, xit, 0.1),

kurt
(
ηi,t−1,Zt,Zt−1, xit

)
=

[
Qη(ηi,t−1,Zt,Zt−1, xit, 0.75) −Qη(ηi,t−1,Zt,Zt−1, xit, 0.25)

]−1

×

[
Qη(ηi,t−1,Zt,Zt−1, xit, 0.95) −Qη(ηi,t−1,Zt,Zt−1, xit, 0.05)

]
.

We report estimates of these quantities in Supplemental Appendix D.
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of macro and micro shocks to the cost of income risk, the topic of Section 7.

3 Statistical population and identification

Here we describe the statistical population concept for our framework which is based on
what we refer to as a time series of panels. Specifying the data generating process involves
two challenges: allowing for potentially omitted aggregate shocks and accounting for the
fact that the cross-sectional population under observation changes over time. This section
focuses on identification and we defer estimation and inference until Section 4.

3.1 Time series of panels

We begin by introducing the notion of time series of panels, a data structure whose infinite-
sample counterpart is the statistical population of our setting. The researcher observes a
time series of aggregate indicators

Wt, t = 1, . . . ,T + S,

which we use to measure the aggregate factor Zt, and a sequence of panel datasets

Yt, t = 1, . . . ,T,

where each Yt = {yi,t+s : i ∈ It, 0 ≤ s ≤ S − 1} contains individual observations on units in
a sample It of size Nt, representative of the population of interest at time t. The length of
each panel, S, aims at preserving the representativeness of the samples It while ensuring
identification of the parameters of the model.9 Our approach relies on large cross-sections
(large Nt), short subpanels (small and fixed S) and a long time series spanning sufficient
aggregate variation coexisting with an evolving population of micro units (large T).

An advantage of our time series of panels approach, compared to standard long panel
approaches, is that it mitigates concerns over the representativeness of the data when

9This structure nests several important cases. First, a rotating panel scheme, where a share 1/S of
individuals is refreshed every period, is covered by our setup, since an individual may appear in several
subpanels; i.e., i ∈ It neither precludes nor implies i ∈ Iτ for τ , t. Second, repeated cross-sectional data
corresponds to the case S = 1 with T equal to the number of cross-sections. Third, a single long panel
corresponds to T = 1 and S equal to the number of time periods—alternatively, a long panel can always be
split into an overlapping sequence of shorter panels.
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attrition depends on income shocks or covariates (such as age). For example, a long panel
of households spanning the years 1970 to 2019 (as in our empirical analysis) will over-
represent more stable units with higher incomes compared to an actually representative
sample in any given year. A precursor of the time series of panels is the analysis of cyclical
income risk in the U.S. by Storesletten et al. (2004).10

We are now ready to describe the statistical population. For conciseness we use {At} as
shorthand for the time series process {At : −∞ < t < ∞}.

Assumption 1 (Macro states). There is a macro stochastic process {Zt, et,Gt, ωt} such that

(a) {Zt} is stationary and satisfies (3) with Vt i.i.d. over t and standard normal;

(b) the entries of {et} and the possibly unobserved aggregate process {Gt} are mutually independent
and independent of {Zt}, with et stationary and Gaussian, and with Gt i.i.d. over t; and

(c) {ωt} is a process of potentially arbitrary dimension that encompasses Zt, et and Gt, as well as
any other time series factors that may affect the evolution of the micro data (e.g., through εit).

Assumption 2 (Micro processes with macro states). There is a cross-section of micro stochastic
processes {ηit, εit, xit} such that

(a) {ηit, εit, xit} is i.i.d. over i given {ωt}; and

(b) {ηit, εit} given {ωt, xit} satisfies (1) and (2) with uit and vit mutually independent, i.i.d. over t,
and uniformly distributed on (0, 1).

Assumption 3 (Atomicity). Conditional on xit and Gt, for each unit i, the persistent micro shock
uit is independent of the macro shocks Vt and the errors et.

In Assumptions 1, 2 and 3, the process Gt represents potentially unobserved or omitted
aggregate variables, such as shocks orthogonal to the business cycle or survey-specific
factors. Part 1(b) normalizes the serial dependence of Gt. In particular, omitted persistent
macro variables can be accommodated by simply taking Gt to be their surprise (or shock)
component. We also assume that Wt is uninformative about Gt and that Zt (the aggregate
of interest) is unaffected by Gt. This extends to our nonlinear setup the standard shock
orthogonality idea from linear macroeconometric models (e.g., Ramey, 2016).

10An additional advantage of this approach is that it allows us to handle covariates that would otherwise
be collinear with time, e.g., age. Moreover, it may be expensive (sometimes impossible) to keep track of the
same units (e.g., companies) for very long periods.
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The remaining parts of Assumptions 1 and 2 impose (1), (2) and (3), while Assumption
3 requires that no single unit has influence on the aggregate. Nonetheless, as discussed in
Section 2, our framework permits feedback from the micro to the macro side of the model,
as summaries of micro distributions may be included in Zt.

3.2 Identification

The identification problem is to determine the unknown functions Qη and QZ from the
probability distribution of observables. As anticipated, our argument applies to Nt,T→∞
with S fixed. In our setup, the distribution of observables is the distribution PS that assigns
probabilities to events involving finite segments of the vector/function-valued stochastic
process {ξS

t }where ξS
t = ({Wt+s−1}

S
s=0,F

S
t ) with

FS
t (y|x) = P

(
(yit, ..., yi,t+S−1) ≤ y

∣∣∣(xit, ..., xi,t+S−1) = x, ωt

)
.

Here, FS
t (y|x) is the cumulative distribution function (CDF) of {yi,t+s}

S−1
s=0 given {xi,t+s}

S−1
s=0 at

time t. It is a random function that describes cross-sectional probabilities of {yi,t+s, xi,t+s}
S−1
s=0 .

The randomness of FS
t (y|x) comes from the time series process {ωt} of potentially arbitrary

dimension and unknown to the researcher introduced in Assumption 1 (c).
We next outline our identification analysis which brings together techniques from the

macro- and microeconometric literatures, linked by the time series of panels.

Identification of the macro process. Knowing PS implies knowing the distribution of the
stochastic process {Wt} and, in particular, the autocovariance function ℓ 7→ Cov

(
Wt,Wt−ℓ

)
.

In our linear Gaussian environment, this suffices to identify QZ provided there are enough
measurements and a factor normalization holds.

Proposition 1. Under Assumption 1, if (a) (dim(Wt)−dim(Zt))
2 > dim(Wt)+dim(Zt) and (b)

the upper block of Λ is the identity matrix, then QZ is identified.

Proof. See Supplemental Appendix B. □

This follows from standard results for linear state-space models. We note that condition
(b) could be replaced by alternative factorr normalizations (Stock and Watson, 2016).
Although in more general nonlinear and non-Gaussian settings a different technique will
be needed, it is often possible to learn about QZ using external time series data alone. On
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the other hand, when Zt is directly observed (as in, e.g., Storesletten et al., 2004 where Zt

is the NBER recession indicator), this step is not needed as QZ is automatically identified.

Identification of the micro process. For a given t, knowledge of FS
t allows the researcher

to pin down the latent variable distributions that condition on the unknown macro shocks
coincidental with the time-t panel. This is a microeconometric identification problem.

Proposition 2. Suppose S ≥ 4 and almost surely over realized paths of {ωτ}, for each t,

(a) the density of {yi,t+s, ηi,t+s}
S−1
s=0 given {xi,t+s}

S−1
s=0 and ωt is bounded away from zero and infinity

and so are all corresponding marginals and conditionals, and

(b) with fηr|yr̃,x,t
the density of ηir given yir̃, {xi,t+s}

S−1
s=0 and ωt, the families

F
r,t
−

(x) ≡
{

fηr|yr−1,x,t
(·|y, x) : y ∈ R

}
and F r,t

+ (x) ≡
{

fηr|yr+1,x,t
(·|y, x) : y ∈ R

}
are complete for t < r < t + S − 1 and for all x.

Let P
S

be the probability distribution of the vector/function-valued stochastic process {ξ
S
t } where

ξ
S
t = ({Wt+s−1}

S
s=0, {Fη,t+s,t}

S−2
s=2 ) with

Fη,r,t(η̃|η, x) = P
(
ηir ≤ η̃

∣∣∣ηi,r−1 = η, xir = x, ωt

)
.

Then, under Assumption 2, P
S

is identified.

Proof. See Supplemental Appendix B. □

Under the conditions of Proposition 2, given a path for the aggregate shocks, there is a
known injective mapping from the joint CDF of observables FS

t to the latent variable CDFs
{Fη,t+s,t}

S−2
s=2 . This is established as in ABB using the spectral decomposition techniques of

Hu and Schennach (2008) and Wilhelm (2015). The completeness assumption stated in part
(b), a nonparametric analog of the rank conditions often used in identification arguments,
is instrumental for this result. Proposition 2 then simply asserts that the researcher can
determine from PS the joint distribution P

S
of those CDFs and the macro data {Wt+s−1}

S
s=0.

A by-product of this operation is the identification of the distribution of the transitory
component CDF, Fε,r,t(ε|x) = P( εir ≤ ε

∣∣∣xir = x, ωt) for 1 ≤ s ≤ S − 2. Under the cross-panel
consistency requirement Fε,t,t = Fε,t,t−1, the distribution of Finit,t(η|x) = P

(
ηit ≤ η

∣∣∣xit = x, ωt
)

is also identified. This is a mild condition asking the transitory income distribution of the
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populations of two consecutive panels to agree within a given period, and it is compatible
with unrestricted nonstationarity across periods.

It is important to note that Proposition 2 gives sufficient conditions for identification,
but it may still be possible to recover the object of interest under a different set of assump-
tions and a different value of S.11 There are many other models of micro-level dynamics for
which a large enough S enables identification of time-specific latent variable CDFs using
micro data alone.12 The challenge is linking them to the macro-level states of interest.

Proposition 3. Let Assumptions 1, 2, 3, and the conditions of Propositions 1 and 2 hold. With
fzr|W

S
t

the density of (Zr,Zr−1) given WS
t = (Wt, ...,Wt+S−1) suppose that the family

Fzr|W
S
t
≡

{
fzr|W

S
t
(·|W) : W ∈ R

dim(Wt)S
}

is complete for some 1 < r − t < S − 1. Then, Qη is identified.

Proof. See Supplemental Appendix B. □

Our identification analysis clarifies the role played by each element in our framework:
large cross-sections help recover the time-t short-panel distribution FS

t ; the subpanel length
S balances the ability to identify latent variable distributions {Fη,r,t} with the credibility of
sample representativeness; finally, long time series of both external macro data and micro
data allow the researcher to link the time-t cross-sections to the latent aggregate of interest
while averaging out the impact of omitted macro factors.

4 Empirical specification and estimation

In this section we specify a flexible class of parametric models for our framework and
outline a suitable estimation technique. Our empirical strategy relies on series expansions
of the functions Qη, Qε,t and Qinit,t to create rich, highly nonlinear descriptions of income
risk. We build on the stochastic pseudo-likelihood EM method of Arellano and Bonhomme

11Identification simplifies, for example, when Zt is observable and binary.
12For example, if given macro shocks, yit follows a canonical income process where ηit is a random walk,

one needs S ≥ 3. If, instead, yit features heterogeneity in transitory risk (as in Chamberlain and Hirano,
1999 or Almuzara, 2020), one needs S ≥ 5. This highlights a key advantage of time series of panels over time
series of cross-sections: Observing the same unit over a number of periods makes it possible to separate
permanent from transitory components directly by exploiting information on individual transitions.
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(2016) and its extension to time-varying latent variables in ABB, further extending it to a
long time series of short panels involving both macro and micro latent variables.

Empirical specification. For the conditional quantile function of ηit we set

Qη(η, Z̃,Z, x,u) = ψ(η, x)′Θ(u)φ(Z̃,Z), (7)

whereψ,φ are vectors of known basis functions (such as orthogonal polynomials) andΘ is
a matrix of linear splines with nodes (u1, ...,uL) determined by the parameter vector θ. The
vector θ shapes (through Qη) the measures of persistence, aggregate exposure, dispersion
and skewness we introduced in Section 2, and the IRFs and risk decompositions we will
introduce in Sections 6 and 7. The task is to estimate θ.

For the transitory component and for the base-period ηit we set

Qε,t(x,u) = ψε(x)′∆ε,t(u), (8)

Qinit,t(x,u) = ψinit(x)′∆init,t(u), (9)

where ψε, ψinit are vectors of known basis functions and, for each t, ∆ε,t,∆init,t are vectors
of linear splines with nodes (u1, ...,uL) determined by the parameter vectors δε,t, δinit,t. As
stated in Section 2, the quantile functions Qε,t and Qinit,t deliver the distribution of εit and of
ηit at the beginning of each subpanel conditioned on time effects. Specifying Qε,t and Qinit,t

as flexible functions of time allows us to absorb long-term trends and other unmodeled
sources of non-stationarity in the data.

Finally, to ensure the distributions implied by Qη, Qε,t and Qinit,t are supported on the
real line, we propose to model the tails as conditionally exponential. For Qη we set

Qη(η, Z̃,Z, x,u) =

Qη(η, Z̃,Z, x,u1) − exp
(
ψlo(η, Z̃,Z, x)′θlo

)
ln

(
u1
u

)
if u < u1

Qη(η, Z̃,Z, x,uL) + exp
(
ψup(η, Z̃,Z, x)′θup

)
ln

(
1−uL
1−u

)
if u > uL

where ψlo, ψup are vectors of known basis functions and θlo, θup are unknown parameters
included in θ. We adopt a similar specification for Qε,t and Qinit,t.

An arbitrarily good approximation to the true Qη, Qε,t and Qinit,t can be obtained by a
suitable choice of basis functions for sufficiently regular classes as in nonparametric series
methods. Instead, we adopt a flexible parametric perspective in which θ, δε,t and δinit,t are
finite-dimensional. While the identification argument of Section 3 covers nonparametric
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models, the precision with which the objects of interest can be estimated is limited by the
time series length T, or more concretely, by the scarcity of recessions and booms in the
sample. In that context, our approach balances flexibility with statistical power.

Moments. Our model implies complete-data moments involving ȳS
it = {yi,t+s, xi,t+s}

S−1
s=0 ,

η̄S
it = {ηi,t+s}

S−1
s=0 and Z̄S

t = {Zt+s}
S−1
s=0 that pin down the true θ and δt = ({δε,t+s}

S−1
s=0 , δinit,t),

E
[

mθ

(
θ0; ȳS

it, η̄
S
it, Z̄

S
t

) ]
= 0, E

[
mδ

(
δ0t; ȳS

it, η̄
S
it

) ]
= 0. (10)

These are moments from quantile and exponential regressions (see Supplemental Ap-
pendix C.1), and they are unfeasible as they depend on macro and micro latent variables.

Pseudo posteriors. To operationalize our approach, we need to transform the unfeasible
moments (10) into feasible moments that depend only on observable data. We do so in two
steps by sequentially integrating out the unobserved latent variables against a convenient
choice of pseudo posterior distributions. Specifically, in a first step we integrate ηit out
with respect to its (unit-level) posterior density given the micro data yit and xit and
the aggregate state Zt. In a second step, we integrate Zt out with respect to its aggregate
posterior density given Wt. Proceeding in this way has the advantage of clarifying the role
of micro and macro components for estimation, in analogy to our identification analysis.
It also leads to a tractable numerical implementation that draws on known algorithms
from microeconometric and macroeconometric traditions.

Let f be a generic probability density function (PDF). In a first step, we define the (still
unfeasible) partial-data moments, for hypothetical values θ, θ′, δt, δ

′

t,

mθ

(
θ;θ′, δ′t, ȳ

S
it, Z̄

S
t

)
=

∫
mθ

(
θ; ȳS

it, η̄
S, Z̄S

t

)
f
(
η̄S

∣∣∣ȳS
it, Z̄

S
t , θ

′, δ′t
)

dη̄S,

mδ

(
δt;θ

′, δ′t, ȳ
S
it, Z̄

S
t

)
=

∫
mδ

(
δt; ȳS

it, η̄
S
)

f
(
η̄S

∣∣∣ȳS
it, Z̄

S
t , θ

′, δ′t
)

dη̄S.

The conditional density f
(
η̄S

∣∣∣ȳS
it, Z̄

S
t , θ, δt

)
is the individual micro-level posterior from ABB

but conditioning on aggregate states and time effects. It is fully determined via Bayes rule
through our parametric model, and it can be efficiently sampled from using Sequential
Monte Carlo techniques (Arellano et al., 2023, Section 4.3).
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By (10) and the law of iterated expectations,

E
[

mθ

(
θ0;θ0, δ0t, ȳ

S
it, Z̄

S
t

) ]
= 0, E

[
mδ

(
δ0t;θ0, δ0t, ȳ

S
it, Z̄

S
t

) ]
= 0, (11)

which indicates the partial-data moments (11) provide valid restrictions on θ and δt.
Letλ be a vector containing the macro parameters. Write Y

S
t = {ȳ

S
it}i∈It

and W = {Wt}
T+S
t=1 .

In a second step, we define the aggregated observed-data moments,

Mθ

(
θ;θ′, δ′t, λ

′,Y
S
t ,W

)
=

∫  1
Nt

∑
i∈It

mθ

(
θ;θ′, δ′t, ȳ

S
it, Z̄

S
t

) f
(
Z̄S

∣∣∣W, λ′
)

dZ̄S,

Mδ

(
δt;θ

′, δ′t, λ
′,Y

S
t ,Wt

)
=

∫  1
Nt

∑
i∈It

mδ

(
δt;θ

′, δ′t, ȳ
S
it, Z̄

S
) f

(
Z̄S

∣∣∣W, λ′
)

dZ̄S.

The conditional density f
(
Z̄S

∣∣∣W, λ
)

is the smoothing posterior from model (3), and it can be
efficiently sampled from using the Kalman filter. Again, by (11) and iterated expectations,

E
[

Mθ

(
θ0;θ0, δ0t, λ0,Y

S
t ,W

) ]
= 0, E

[
Mδ

(
δ0t;θ0, δ0t, λ0,Y

S
t ,W

) ]
= 0. (12)

Functions Mθ and Mδ give restrictions on θ and δt (given λ) that only depend on observ-
ables.13 We rely on the sample counterpart of the moments in (12) for estimation.

Stochastic EM implementation. The main challenge in exploiting (12) for estimation is
integrating the primitive moments against the pseudo posteriors of ηit and Zt. We follow
Arellano and Bonhomme (2016) and adopt a simulation-based approach. Let λ̂ be macro
parameter estimates obtained from the macro data W alone (e.g., maximum likelihood).
We rely on the following stochastic EM algorithm to estimate θ and {δt}

T
t=1, which iterates

between simulation smoothing of macro and micro latent variables and running quantile
and exponential regressions.

Algorithm 1. Initialize parameters θ̂(0) and {δ̂(0)
t }

T
t=1. For j = 1, ..., J, iterate between the following:

1) Pseudo-Stochastic E step:

13This is in the spirit of the unbiased likelihood estimate used by Liu and Plagborg-Møller (2023, Section
3.1) in a full-information Bayesian setup. Our approach is based on pseudo likelihood functions but allows
for panel data, micro-level latent variables and potentially omitted aggregate shocks.
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(i) draw Z( j) = {Zt( j)}T+S
t=0 from the macro posterior f

(
Z
∣∣∣∣W, λ̂

)
,

(ii) independently over units i and subpanels t, draw η̄S
it( j) = {ηi,t+s( j)}S−1

s=0 from the micro

posterior f
(
η̄S

it

∣∣∣∣ȳS
it, Z̄

S( j), θ̂( j−1), δ̂( j−1)
t

)
.

2) Pseudo M step:

(i) update the parameters to θ̂( j) and {δ̂( j)
t }

T
t=1 by quantile and exponential regressions

treating
{
{{ηi,t+s( j), yi,t+s, xi,t+s,Zt+s( j)}S−1

s=0 }i∈It

}T

t=1
as data.

For some µ ∈ (0, 1), set θ̂ = (µJ)−1 ∑J
j=(1−µ)J θ̂

( j) and δ̂t =
∑J

j=(1−µ)J δ̂
( j)
t .

We present algorithms to perform steps 1(i) and 1(ii) in Supplemental Appendix C.2.
Our approach departs from full-information likelihood estimation in two directions.

First, we use complete-data moments from quantile and exponential regressions instead
of solving the score equations from the complete-data likelihood. This carries a significant
computational simplification as quantile and exponential regressions are fast and stable to
run, compared to the mostly intractable score equations of the model. Second, rather than
smoothing latent variables {{η̄S

it}i∈It
,Zt}

T
t=1 using their full joint posterior given {Y

S
t }

T
t=1 and

W, we use only certain slices of the posterior (akin to composite-likelihood methods): e.g.,
we integrate unit-i micro latent variables η̄S

it conditioning on unit-i data ȳS
it rather than the

full microdata {Y
S
t }

T
t=1. This comes potentially at a cost in terms of asymptotic efficiency

but it has the advantage that the micro-level pseudo posteriors do not require us to model
the cross-sectional dependence induced by the omitted aggregate factors Gt.

Even though our focus is on income risk, it is important to highlight that this method of-
fers a flexible, general-purpose way to estimate rich models of micro-level latent variables
subject to macro shocks, and can be applied far more generally.

Large-sample properties. We next summarize statistical properties of θ̂ and functions
of θ̂ which cover the objects in Section 2.2, and the IRFs and risk calculations we discuss
later. See Supplemental Appendix C.3 for further discussion. Our asymptotic analysis
assumes Nt,T→∞with S fixed, and T/Nt → 0. That is, the number of individuals in each
subpanel and the number of subpanels is large while the length of each subpanel is small,
reflecting our identification argument. We also assume that the time-series dimension is
small relative to the cross-sectional dimension, as in our empirical setting.

Given the macro parameter estimate λ̂, Algorithm 1 delivers θ̂ and the sequence {δ̂t}
T
t=1.

In our empirical analysis, we are interested in objects that can be expressed as a smooth
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function γ(θ) of θ, for which it is natural to use the plug-in estimator γ̂ = γ(θ̂). Recall that
θ0 denotes the true value of θ and let γ0 = γ(θ0). Our main result is as follows:

Proposition 4. Let Assumptions 1, 2, 3 hold with (7), (8), (9). As Nt,T→∞ with T/Nt → 0,

√

T
(
θ̂ − θ0

) d
−−−−→ N

(
0,Σθ0

)
and
√

T
(
γ̂ − γ0

) d
−−−−→ N

(
0, Jθ0

Σθ0
J′θ0

)
,

where Σθ0
is symmetric and positive semi-definite, and Jθ0

is the Jacobian of γ evaluated at θ0.

Proof. See Supplemental Appendix C.3. □

Proposition 4 implies that the precision of the estimator is determined by T, not by Nt.
The main reason is that identification of θ relies on time series variation to average out
the effect of the unobserved factors Gt.

14 Instead, the role of cross-sectional variation is to
help control the error coming from the estimation of the time-varying parameters δt.

Empirical implementation. For Qη in (7), we model ψ as a third-order polynomial in η
combined with a second-order polynomial in x, and we construct φ as a restricted second-
order polynomial in (Z̃,Z): we exclude the linear term from interactions between η and x,
and include the quadratic term only in the intercept. We set ψlo and ψup to second-order
polynomials in η, x, Z̃ and Z without interactions. Regarding Qε,t in (8) and Qinit,t in (9) we
allow their intercepts and tail coefficients to change over time. We also include in Qinit,t a
time-invariant second-order polynomial in x. The rank-space grid size is set to L = 11.

Inference. To gauge the statistical precision of our estimates below we report confidence
intervals computed by a parametric bootstrap technique that exploits our model structure
while accounting for (i) cross-sectional dependence induced by omitted aggregate factors
Gt and (ii) unit-level dependence induced by the sampling design of the PSID. The specifics
are discussed in Supplemental Appendix C.4.

5 Macro shocks and nonlinear income risk

We now present our empirical analysis of the effects of macro shocks on nonlinear income
risk. We discuss the macro data and business cycle state in Section 5.1. This is followed by
a description of our main source of micro data, the PSID, in Section 5.2. We then turn to

14The convergence rate would be the same if Zt were observable (e.g., the NBER recession indicator).
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the quantification of aggregate effects on measures of nonlinear persistence (Section 5.3),
exposure to aggregate shocks (Section 5.4), and conditional skewness (Section 5.5).

5.1 Macro data and the aggregate state

We extract the aggregate state Zt from a vector of macro observables Wt informative about
the business cycle consisting of GDP, consumption, investment, the unemployment rate
and hours worked. The data are quarterly and cover 1960Q1–2019Q4. GDP, consumption,
investment and hours are measured in log per-capita terms while the unemployment rate
is multiplied by−1 to make it procyclical as the other entries of Wt. All series are detrended
by removing a two-sided 40-quarter low-pass filter from them.15

For estimation, we normalize the loading on GDP to one. Therefore, the business cycle
process Zt is measured as a log deviation from its per-capita growth trend. We specify Zt

and each entry of et as independent AR(2) processes and estimate the macro parameters
λ by Gibbs sampling using a flat prior. Supplemental Appendix C.2 discusses the details.
Figure 1 shows the time series evolution of Wt and estimates of Zt.
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FIGURE 1. Business cycle indicators and estimates of Zt
Note: We plot real GDP, consumption and investment per capita, the unemployment rate and hours worked
alongside our estimate of the business cycle factor Zt. We standardize them to mean zero and unit variance.
Red shaded areas are 90% pointwise probability bands and gray areas indicate NBER-dated recessions.

Three takeaways from the figure are as follows. First, and not surprisingly, the variables
included in Wt show strong comovements. As a result, filtering out Zt is statistically easy,

15The data come from Federal Reserve Economic Data (FRED). To construct Wt we took from Angeletos
et al. (2020) the subset of variables most informative about the MBC shock, although our results are robust
to alternative specifications that expand Wt with other macro indicators.
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as evidenced by the tight 90% probability bands drawn around the estimate. Second, there
is substantial cyclical variation in Zt, and this remains true when we consider temporally
aggregated versions of it. For example, Figure 1 marks with a diamond the estimates of Zt

for the fourth quarter of each year. They clearly retain a meaningful share of the aggregate
variation we see at the quarterly frequency. This is important because income data at the
micro level typically refer to annual income. Third, there is evidence of some asymmetry
between recessions and expansions, particularly in the last 40 years: Recessions are deep
and occur suddenly, while expansions are mild and unfold gradually. It would be possible
to enrich model (3) to accommodate that feature, although this is unlikely to impact our
estimates of Zt given their precision. Nonetheless, in computing summaries that condition
on the aggregate state we will adopt the notion of a typical recession, Z̃r = −2σZ, a steady
state, Z̃ss = 0, and a typical expansion, Z̃e = σZ, where σ2

Z = Var( Zt ).
In this context, a central object is the IRF of the macro state variable Zt to the shock Vt.

We will return to it when discussing IRFs more generally in Section 6.2.16

5.2 Micro data and cyclical patterns in the PSID

As we outlined in Section 3, the micro data for our study takes the form of a time series of
panels. We draw to this end from the long history of panel data on income and earnings
available in the Panel Study of Income Dynamics (PSID).

Established in 1968, the PSID initially surveyed a nationally representative set of U.S.
households. Ever since, it has followed those families and, as their children come of age
and form independent households, incorporated those new units into the panel. With the
periodic addition of refresher and immigrant samples, the PSID design aims at capturing
the process of household formation and dissolution in the U.S. economy over time. It also
accords with our notion of time series of panels in Section 3 as it allows us to form a long
sequence of short subpanels, each reflecting representativeness at a point in time, which
taken together span a rich history of aggregate fluctuations.

Interviews were conducted annually between 1968 and 1997, and biennially after 1999.
Whether annual or biennial, the year-k interview (which typically occurs between March
and November) asks the household to report annual income for year k − 1. We make use
of all available waves beginning in 1970 and ending in 2019: we exclude 1968 and 1969 as

16We also discuss IRFs of Wt to Vt and compare them to the IRFs estimated in Angeletos et al. (2020) for
the MBC shock in Supplemental Appendix E.3.
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some income and demographic variables were not collected in those waves, and we stop
at 2019 because of the COVID-19 pandemic. We then form a time series of panels where
each subpanel has S = 4 biennial waves, although, crucially, we exploit all years. We use
biennial panels because we are constrained by the change in data collection frequency
after 1999. This also has the advantage of making the assumption of serially uncorrelated
εit more plausible. But nonetheless, prior to 1999, the panels we construct have base years
which cover both even and odd years, so we make use of all available annual observations.
Given the biennial nature of the subpanels, t − 1 below is understood as two years before
t, and with a slight abuse of notation we denote by Zt the value of the macro state in the
fourth quarter of t. This is relevant to interpret the income process and summaries.

In our data selection, a household is so that the representative person is male, married
and aged 25 to 60, and so that income is positive.17 We consider three different measures
of income: male earnings, household earnings, and disposable income. Male earnings are
the labor income of the household head. Household earnings add in the labor income of
the spouse. Disposable income adds transfers and subtracts federal taxes. We compute
taxes with the tax functions estimated by Borella, De Nardi, Pak, Russo, and Yang (2023)
and deflate everything to 2016 dollars using the consumer price index (CPI-U).18

We construct yit by residualizing log income against the following covariates interacted
with a quadratic time trend: education, race, family size, number of children, an indicator
for the presence of dependents, and state of residence. Except for family size and number
of children, the other variables are treated as categorical. We then add back to all units the
same constant representing a household with typical covariates.19 We also exclude age
from this operation which, as anticipated, enters Qη and Qinit,t0

in the form of xit.
20

This is the data for our analysis. Before we delve into it, we give a descriptive account
of cyclical patterns in the PSID using similarly constructed datasets with S = 1 and S = 2.

Descriptives. Figure 2 offers a first look at the micro data using repeated cross-sections
(S = 1). The period covers seven NBER recessions (the two downturns of the 80s merged

17In addition to the main sample representative of the U.S. population, the PSID maintains a low-income
sample known as the Survey of Economic Opportunities. Our analysis makes use only of the former.

18Beyond partialling out state-of-residence dummies, we do not explicitly account for differences in state
taxes but one possibility is to use the tax functions in Fleck, Heathcote, Storesletten, and Violante (2025).

19This is a white college graduate with family size four, two children, no dependents, who resides in the
state of New York. This level shift has no impact on the dynamics of ηit or any of the summaries of interest.

20Including xit as an argument of Qε,t does not affect our empirical results.
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into a single bar). Panel (a) shows the fraction of zeros that would be dropped to compute
yit. It shows that most of the time less than 2% of the sample reports zero annual household
earnings (blue). This applies to recessions too, except for the Great Recession in 2007 when
the fraction briefly exceeded 2%. The story is different for male earnings, for which zeros
constitute a larger fraction and there seems to be a steeper upward trend over time.
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FIGURE 2. Distributional characteristics of income measures over time
Note: We show the fraction of zeros and the 10th, 50th and 90th percentiles (conditional on positive income)
for our income measures in thousands of 2016 dollars. Shaded areas are NBER recessions.

Given the demographic criteria in our data selection, practically no unit reports zero
disposable income for a whole year. Since this is also the relevant measure for studying
the effects of aggregate risk on consumption and welfare, disposable income will be our
primary focus below. We report results for male and household earnings for comparability
with the caveat that doing so abstracts from the extensive margin. To the extent that this
margin is cyclical and recessions imply larger drops in labor income than what we observe,
our results for male and household earnings should be taken as a lower bound on the
impact of negative macro shocks along those margins.

Panels (b) to (d) in Figure 2 illustrate the evolution of low, middle and high incomes over
time. One highlight is that there are divergent secular trends in the income distribution,
with fast growth at the top and stagnation (or even decline) at the bottom. These trends
have been extensively studied in the literature, usually linking them to changes in female
labor force participation, structural transformation, reforms to the tax and social security
systems, and other phenomena.21 But importantly for us, these trends coexist with sizable
cyclical variation. A quick glance reveals that incomes fall in recessions in ways that are
heterogeneous over the income distribution (more at the bottom than in the middle), across

21In our framework of analysis, part of these low-frequency changes are controlled for by netting out the
effect of covariates interacted with time trends in the construction of yit, while another part will be absorbed
by the time-varying functions Qinit,t0

and Qε,t.
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income measures (more for male earnings than for disposable income) and depending on
the severity of the downturn (the double-dip recession of the 80s and the Great Recession
being the worse). Figure 2 is also indicative of the redistributive role of taxes and transfers,
as going from household earnings to disposable income pushes low incomes up and higher
incomes down, and of the insurance role of both spousal income and taxation which tend
to mitigate income losses during recessions.

Next, Figure 3 uses a time series of biennial panels (S = 2) to measure the evolution of
conditional skewness from flexible quantile autoregressions of yit. Skewness is measured
as in (6) but period-by-period (instead of conditioning on Zt) and for yit, not for ηit.
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FIGURE 3. Conditional skewness over the business cycles.
Note: We report conditional skewness from quantile regressions of yit on a third-order polynomial of past
income. Low, middle and high income refer to the 10th, 50th and 90th percentile of the income distribution.
The business cycle indicator is normalized to have the mean and variance of middle-income skewness.

The figure tells a tale of two skewnesses. On the one hand, skewness is countercyclical
(as in Guvenen et al., 2014). On the other, it markedly decreases with income at any point
in time (as in ABB), and differentially so depending on the phase of the business cycle. We
see these patterns at play in all three income measures, although the cyclical movements
in skewness become less pronounced when we add spousal income and taxation, as seen
in the correlation with Zt reported in parenthesis in the legend of each panel.

The descriptive analysis presented so far points to salient cyclical features in income
data. These are consistent with heterogeneous nonlinear transmission of micro and macro
shocks which our framework will allow us to quantify. We undertake this task next.

Model fit. We fit our model to the macro and micro data with the empirical specification
of Section 4, where we also explain how estimation and inference are implemented.

To assess goodness of fit, Figure 4 compares a selection of data summaries (red) with
their counterparts in our model obtained by simulation (blue) for (a) the level of income,
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(c) biennial income growth, projection on aggregate state
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FIGURE 4. Model fit assessment (disposable income).
Note: Panel (a) compares data (red) and model (blue) implications for the percentiles of the level of income in
thousands of 2016 dollars (eyit/1000). Panel (b) compares percentiles and measures of persistence, dispersion
and skewness for income growth ∆yit while panel (c) reports those objects projected on (Zt,Zt−1) net of an
intercept and time trend. Model outputs are obtained from 1,000 simulated samples where we draw shocks
accounting for cross-sectional and unit-level dependence; shaded areas are 90% probability bands.
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(b) income growth, and (c) their cyclical component. Although there are clear trends in the
distributions of the level and growth rate of income which are not related to the business
cycle, our model tracks their evolution over time closely. The model is especially good at
matching the dynamics of income growth persistence and skewness in panel (b) although
it slightly overstates the dispersion.22 Reassuringly, when we project these summaries
on the business-cycle state in panel (c), data and model coincide, even for the dispersion.
The main takeaways from this comparison, done here for disposable income, also apply
to male and household earnings, and they extend to income growth over longer horizons
(omitted for economy of space).23

5.3 Nonlinear persistence: ρ tilts with the aggregate state

We now turn to quantifying empirically the effect of aggregate shocks on different aspects
of nonlinear income risk. We begin by discussing the persistence of past income histories
and how it changes over the business cycle. To that end, we use the measure of nonlinear
persistence ρ(u, η,Zt,Zt−1, x) defined in Equation (4) of Section 2.

The left panels of Figure 5 show our estimates ofρ(u, η,Zt,Zt−1, x) for the three measures
of income we consider. We plot persistence by quantiles of the current shock u = uit and
past persistent income η = ηi,t−1 where age x = xit is averaged out, Zt−1 = Z̃ss is held at
its steady state value and Zt takes on different values representing a typical recession Z̃r

(red), the stead state Z̃ss (yellow) or a typical mild expansion Z̃e (blue). On the right panels,
we report the recession minus the expansion persistence. If the recession persistence is
above (below) its expansion counterpart according to a one-sided pointwise test at the 5%
significance level, we indicate that with magenta (cyan).

We highlight two takeaways from Figure 5. First, it confirms the nonlinear persistence
pattern uncovered in ABB over a much longer history and across income measures. For
example, in the steady state surface for disposable income, the average persistence is 0.92.
It falls to 0.85 for a unit in the 90th η-percentile hit with a bad shock u = 0.1 and to 0.60 for
a unit in the 10th η-percentile hit with a good shock u = 0.9. As already discussed, since
ρ is a measure of how closely related current and past incomes are, this captures the fact

22We measure persistence by the coefficient on past income in a quantile regression of yit on yi,t−ℓ including
an intercept. This corresponds to the measure (4) in a linear quantile autoregression.

23Our calculations show that the permanent-transitory specification for yit is key to fit the persistence
of long-run income growth. A model with no transitory component understates the persistence at long
horizons.
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FIGURE 5. Nonlinear persistence.
Note: The left panels report the persistence measure ρ(u, η,Zt,Zt−1, x) by quantile of the shock u = uit and
past persistent income η = ηi,t−1. Here, age x = xit is averaged out, Zt−1 = Z̃ss and Zt is a recession Z̃r, the
steady state Z̃ss or an expansion Z̃e (see Section 5.1). The right panels show the gap in persistence between
recession and expansion, ρ(u, η, Z̃r, Z̃ss, x) − ρ(u, η, Z̃e, Z̃ss, x). The difference is painted magenta (cyan) if it is
statistically positive (negative) at the 5% significance level (one-sided test).
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that a big shock of a given direction may sometimes erase an entire income history.
The second takeaway is that the ABB persistence pattern is itself macro state-dependent,

as aggregate shocks tilt the estimated persistence surface. Comparing recessions and ex-
pansions, ρ increases for low-η and decreases for high-η units (particularly those affected
by bad shocks) during a downturn. In words, a low-η household has it more difficult to
leave the low-income state in the midst of a contraction, while a high-η household finds it
harder to remain high-income. These effects are large both statistically and economically.
For disposable income, ρ decreases by 0.09 for the 90th η-percentile with u = 0.1 and
increases by 0.07 for the 10th η-percentile with u = 0.9 as we move from Zt = Z̃e to Zt = Z̃r.

Some additional insights are obtained by comparing disposable income with male and
household earnings. For our earnings measures, the increase in persistence at low incomes
during recessions tends to be bigger than for disposable income. This fact is suggestive of
the insurance role of taxes and transfers in attenuating the impact of negative aggregate
shocks for the left tail of the income distribution, consistent with the descriptive account
in Section 5.2—although the comparison abstracts from extensive margin effects.

5.4 Exposure to aggregate shocks: β is countercyclical

A second key aspect of nonlinear income risk is the persistent income exposure to macro
shocks, measured by the nonlinear aggregate exposure coefficient β(u, η,Zt,Zt−1, x) given
in Equation (5) of Section 2. Figure 6 presents our estimates.
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FIGURE 6. Nonlinear exposure to aggregate shocks.
Note: We report the aggregate risk exposure β(u, η,Zt,Zt−1, x) by quantile of the shock u = uit averaged over
persistent income η = ηi,t−1. Age x = xit is averaged out, Zt−1 = Z̃ss and Zt is a recession Z̃r, the steady state
Z̃ss or an expansion Z̃e (see Section 5.1). Shaded areas represent 90% confidence bands.

In Figure 6, we show β(u, η,Zt,Zt−1, x) as a function of the micro-level shock u = uit that
occurs at the time of the macro shock. We average past income η = ηi,t−1 and age x = xit,

32



and fix Zt−1 = Z̃ss, allowing Zt to take values compatible with a recession Z̃r, steady state
Z̃ss or expansion Z̃e (discussed in Section 5.1).

Three patterns stand out. First, the exposure to aggregate shocks depends on Zt and
is countercyclical. Averaged over u and η, in our disposable income calculations, β is 1.3
in a recession, 0.6 in steady state and 0.2 in an expansion. Given the normalization of Zt

in Section 5.1, these numbers can be interpreted as the elasticity of persistent income to
an aggregate shock that implies a one percentage point change in GDP per capita relative
to its trend. Accordingly, a negative macro shock leads to an aggregate reduction in the
persistent component of disposable income that is more or less than one-for-one the fall
in GDP depending on whether the economy is already in a recession when the shock hits.
This is a major form of aggregate state-dependence and one that is ruled out by models
in which aggregate shocks enter additively. What is more, we argue in Section 7 that this
nonlinearity plays a key role in the cost of business cycle risk.

Second, the aggregate exposure coefficient varies across income measures, with male
earnings the most and disposable income the least sensitive to Zt. For example, the reces-
sion average β is 1.8 for male earnings, 1.6 for household earnings and 1.3 for disposable
income. The same applies to the steady state and expansion β, and at different quantiles
of u = uit and η = ηi,t−1, as seen in additional results in Supplemental Appendix D.

The last pattern to analyze is the interaction between macro and micro shocks. Units
affected by bad micro shocks u = uit at the time when the macro shock occurs are relatively
more exposed during recessions (and generally less during expansions) than units subject
to neutral or good shocks. In other words, the consequences of recessions are not evenly
distributed but are borne mostly by those who experience bad micro luck as the downturn
unfolds. This is another feature ruled out by linear models with aggregate shocks.

5.5 A tale of two skewnesses

We conclude by discussing the conditional skewness measure introduced in Equation (6)
of Section 2. A full picture of aggregate effects on income risk is completed by measures
of dispersion and kurtosis (footnote 8). They appear to be less cyclical than the skewness
(in line with Guvenen et al., 2014), and we report them in Supplemental Appendix D.

The upper panels of Figure 7 show sk(η,Zt,Zt−1, x) for different quantiles of η = ηi,t−1

with Zt−1 = Z̃ss when Zt ranges from recession Z̃r, through steady state Z̃ss to expansion Z̃e.
Age x = xit is averaged out. The lower panels display the difference in skewness between
recession and expansion including 90% pointwise confidence bands.
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(c) disposable income
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FIGURE 7. Conditional skewness.
Note: The upper panels report skewness sk(η,Zt,Zt−1, x) by past persistent income η = ηi,t−1 where age x = xit

is averaged out, Zt−1 = Z̃ss and Zt is a recession Z̃r, the steady state Z̃ss or an expansion Z̃e (see Section 5.1). The
lower panels show the gap in skewness between recession and expansion, sk(η, Z̃r, Z̃ss, x) − sk(η, Z̃e, Z̃ss, x).
Shaded areas represent 90% confidence bands.

Figure 7 provides empirical support for the tale of two skewnesses suggested by
our descriptive analysis (Figure 3 in Section 5.2). The ABB skewness pattern, by which
sk(η,Zt,Zt−1, x) decreases for higher η, is accompanied here by a cyclical skewness pattern:
Recessions tend to shift sk(η,Zt,Zt−1, x) toward the negative plane at all levels of η, often
by a large margin. Mirroring nonlinear persistence and exposure to aggregate shocks,
cyclical shifts in skewness are strongest for male earnings and weakest for disposable
income, that is, after spousal earnings and the tax-transfer system are taken into account.

Since sk(η,Zt,Zt−1, x) is a measure of the relative strength of upside and downside
income risks, our results characterize recessions as periods when downside risk becomes
more prevalent in a generalized but heterogeneous way across the income distribution.

6 Impulse response analysis

In this section, we develop new methodology for measuring impulse responses to macro
and micro shocks. We first present our approach and then discuss empirical estimates.
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6.1 Measuring the propagation of macro and micro shocks

To develop the idea, we focus on the persistent component η and omit covariates x. From
Equations (1) and (3) we get by recursive substitution the representation

ηi,t+h = qη,h
(
uh

it,V
h−1
t+1 , ηi,t−1,Zt,Zt−1

)
, h = 0, 1, . . . , (13)

where uℓit = (uit, . . . ,ui,t+ℓ) and Vℓ
t = (Vt, . . . ,Vt+ℓ). With the distribution of micro and macro

shocks, Equation (13) determines the predictive distribution of ηi,t+h given initial states
(ηi,t−1,Zt,Zt−1). In what follows we assume Zt is scalar, although it is straightforward to
generalize the derivation to the multivariate case.

The macroeconometric tradition typically defines macro and micro impulse responses
as E

[
ηi,t+h

∣∣∣ Vt = 1
]
−E

[
ηi,t+h

∣∣∣ Vt = 0
]

and E
[
ηi,t+h

∣∣∣ uit = 1
]
−E

[
ηi,t+h

∣∣∣ uit = 0
]
, respectively.

In linear models, they coincide with the derivatives of qη,h with respect to shocks Vt and
uit. In our setup, however, this approach suffers from various shortcomings. First, our
model features significant nonlinearities in the persistence and interactions between macro
and micro states and shocks; impulse responses should account for those. Second, in our
model, the shocks Vt and uit are pinned down by normalizations adopted for mathematical
convenience, not for economic reasons. Thus, changes in one unit of Vt or uit need not
be comparable. Third, in our panel data setup, a change of given size in uit may have
different impacts for different individuals.

To address these issues, we define impulse responses as the impact on the predic-
tive distribution of ηi,t+h of perturbations to past states (as opposed to shocks), extending
Gallant, Rossi, and Tauchen (1993) beyond the time series setup. For this purpose, we
introduce a rule (denoted g below) that maps perturbations onto a consistent system of
measurement. As a result, impulse responses will be indexed by past states—allowing
us to document nonlinearities—and depend on the normalization rule—allowing us to
achieve comparability across shocks and units.

IRFs via perturbations. Let us define a benchmark value for one of the state variables:
Zb for Zt for the macro impulse response; ηb for ηi,t−1 for the micro impulse response. Let
us then define the new state value Zp (resp., ηp) by means of the perturbation ∆ = Zp

− Zb

(resp., ∆ = ηp
− ηb). Considering experiments that perturb a single state at a time, we

define impulse responses as suitably scaled differences in the expected trajectory of ηi,t+h

for marginal perturbations ∆, holding every other past and current state constant.
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To select the perturbation∆, we introduce a rule that maps it to a system of comparable
units of change δ. The rule is given by a function g such that

g(Zb) = g(Zb + ∆(δ)) − δ or g(ηb) = g(ηb + ∆(δ)) − δ.

The rule g may depend on the benchmark value and the reference value for the remaining
states but we omit the dependence from the notation. We will focus on the unit rule:

g(z) = z, leading to ∆(δ) = δ.

The unit rule is natural if the perturbed state is measured in money terms, or if it is in
logs in which case the impulse consists of the same approximate 100× δ% change applied
to all individuals. Other choices are possible, depending on the empirical context. For
example, under a rank rule g(z) is the CDF of the perturbed state given the other state and
past states {ηi,t−1−ℓ,Zt−ℓ}ℓ>1.24 The rank rule is appropriate when the state is a concept with
no natural unit of measurement, such as welfare. For the micro IRF, g can be thought of
as an income transfer program implemented by a social planner or policymaker.

Given a rule g, the macro and micro impulse responses are, respectively,

IRFηZ(h, δ) =
E
[
ηi,t+h

∣∣∣ ηi,t−1,Zt = Zb + ∆(δ),Zt−1

]
− E

[
ηi,t+h

∣∣∣ ηi,t−1,Zt = Zb,Zt−1

]
δ

,

IRFηη(h, δ) =
E
[
ηi,t+h−1

∣∣∣ ηi,t−1 = η
b + ∆(δ),Zt,Zt−1

]
− E

[
ηi,t+h−1

∣∣∣ ηi,t−1 = η
b,Zt,Zt−1

]
δ

,

where we leave the dependence on ηi,t−1, Zt and and Zt−1 implicit. For infinitesimal
changes, IRFηZ(h) = limδ→0 IRFηZ(h, δ) and IRFηη(h) = limδ→0 IRFηη(h, δ).

Impulse responses are functions of parameters θ and λ, and can thus be estimated by
the plug-in estimators whose properties we covered in Section 4. In addition, it is possible
to link impulse responses to the ρ and β measures of Section 5, and to derivatives with
respect to locally-defined shocks. We explore those links in Supplemental Appendix E.

24In the macro case, if FV is the CDF of Vt and Q−1
Z is the inverse of QZ with respect to its last argument,

∆ = QZ(Zt−1,F
−1
V [FV(Q−1

Z [Zt−1,Z
b]) + δ]) − Zb. Similarly, in the micro case, if Q−1

η is the inverse of Qη with
respect to its last argument, ∆ = Qη(ηi,t−2,Zt−1,Zt−2,Q

−1
η [ηi,t−2,Zt−1,Zt−2, η

b] + δ) − ηb.
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6.2 Empirical estimates of impulse responses

Macro impulse responses. We begin with estimates of IRFηZ for a negative perturbation
to Zt around the steady state benchmark Zb = Z̃ss. This emulates an aggregate shock that
tips the economy into a recession. We calibrate δ = −2σV with σ2

V = Var( Zt

∣∣∣ Zt−1 ) to match
a shock comparable to the Great Recession and, to facilitate interpretation, we multiply
impulse responses by −1. Figure 8 shows the results.
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(c) disposable income
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(d) aggregate state
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FIGURE 8. Macro impulse responses
Note: Panels (a), (b) and (c) show IRFs of ηit to a negative macro shock for different income measures with
Zb

t = Zt−1 = Z̃ss and ηi,t−1 set to the 10th (low), 50th (middle) and 90th (high) percentiles of the persistent
income distribution. Panel (d) shows the IRF of Zt annualized and scaled to detrended log GDP per capita.
IRFs are multiplied by −1. Shaded areas are 90% pointwise confidence bands.

It is instructive to consider first the trajectory of Zt in panel (d), which is annualized by
averaging the quarterly responses and scaled by the standard deviation of log GDP. The
normalization translates responses into log deviations from the GDP per capita trend. By
this account, our underlying experiment implies a GDP roughly 2.3 and 1.3 percentage
points (pp) below trend in years zero and one after the shock, respectively, returning to
trend afterwards with a slight overshoot in year three.

Next, panels (a), (b) and (c) report macro impulse responses of ηit for our three income
measures and three initial levels of income: the 10th, 50th and 90th percentiles of the ηi,t−1-
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distribution. We highlight the following takeaways. First, the responses are quantitatively
consistent with the dynamics of GDP described above. For example, averaging over the
distribution of ηi,t−1, male earnings fall 2.1 pp on impact following the macro shock, while
household earnings and disposable income fall 1.7 and 1.1 pp.25 Furthermore, all income
measures are near their pre-shock trends after two years; i.e., responses are short-lived.26

Second, household earnings appear as less cyclically sensitive than male earnings but
more than disposable income. This mimics the discussion of Section 5 and is suggestive
of the role of spousal income and the tax-transfer system as potential sources of insurance
against aggregate shocks. Third, the macro IRF is U-shaped in ηi,t−1, with lower (but still
significant) responses in the middle of the income distribution.

A key advantage of our framework is the possibility to measure the interplay between
macro and micro uncertainty. This is illustrated in Figure 9 where we compute a modified
version of IRFηZ(h, δ) that further conditions on the micro shock uit contemporaneous to
the macro perturbation, averaged over the distribution of ηi,t−1. Unlike in linear models,
we cannot separate the contributions of macro and micro shocks additively but we can
quantify the macro state-dependence of micro quantile treatment effects.

(a) male earnings
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(c) disposable income
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FIGURE 9. Interaction between macro impulse responses and micro shocks
Note: Panels (a), (b) and (c) show macro IRFs conditional on the micro shock uit averaged over the distribution
of ηi,t−1 for male earnings, household earnings and disposable income with Zb

t = Zt−1 = Z̃ss. A magenta
(cyan) area indicates the response is statistically negative (positive) at the 5% significance level.

Figure 9 shows sizable heterogeneity in the impact of macro shocks along the micro-
rank distribution. For disposable income, an individual subject to a bad shock uit = 0.1
suffers an expected income loss of 1.6 pp, well above the average of 1.1 pp. The number is

25In line with the literature, this suggests a mildly procyclical labor share (the ratio of household earnings
to total income), although our estimates exclude a small fraction of zero-earnings units.

26Supplemental Appendix E.4 presents local projection estimates of income responses to Vt that uncover
similar patterns. They also point to a significant response at h = 1 that our biennial setup cannot measure.
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0.9 and 1.1 pp for uit = 0.5 and uit = 0.9. We find similar (but more pronounced) U-shaped
patterns in our household and male earnings estimates; see panels (a) and (b).

Micro impulse responses. We conclude this section with estimates of the micro impulse
responses IRFηη for a negative perturbation δ that implies a 10% reduction in ηi,t−1. We
hold Zt and Zt−1 at their steady state value Z̃ss and multiply responses by −0.1 for ease of
interpretation. See Figure 10.
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FIGURE 10. Micro impulse responses
Note: Panels (a), (b) and (c) display IRFs of ηit to a negative micro shock for different income measures with
Zt = Zt−1 = Z̃ss and ηb

i,t−1 set to the 10th (low), 50th (middle) and 90th (high) percentiles of the distribution
of ηi,t−1. Shaded areas are 90% pointwise confidence bands.

The main takeaway, consistent across income measures, is that micro responses decay
slowly and at different rates that depend on the initial level of income, with less (more)
persistence for low-η (high-η) units. This reflects an intrinsic connection between nonlinear
persistence ρ and IRFηη that we discuss in Supplemental Appendix E.

Positive shocks. Supplemental Appendix E.5 reports IRFs to positive perturbations.

7 Risk quantification

In this last section, we develop our methodology to quantify aggregate and idiosyncratic
contributions to income risk. We conclude by discussing empirical estimates.

7.1 Measuring the contribution to risk of macro and micro shocks

Our approach to risk quantification relies on the indirect utility of persistent income. Let
U(eηit) be the period utility of a household whose persistent log income component at time
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t is ηit. We focus on indirect utility since we do not have consistent data on consumption,
and abstract away from the transitory component εit as it may contain measurement error.
Following the macroeconomics tradition after Lucas (1987, 2003), we will measure the risk
contribution of shocks by compensating variation: the value CV such that

E
⋆

 H∑
h=1

δtU
(
(1 − CV) eηi,t+h

) ∣∣∣∣∣∣∣ ηit,Zt

 = E
 H∑

h=1

δtU
(
eηi,t+h

) ∣∣∣∣∣∣∣ ηit,Zt

 . (14)

In (14), E denotes expectations over the actual persistent income process, while E⋆ denotes
expectations under a counterfactual income process where the macro or the micro shocks
have been removed. Here CV may depend onηit and Zt, although we leave the dependence
implicit.

The quantity CV measures the fraction of income the agent would be willing to forego
in every period in order to eliminate a source (macro or micro) of income risk. Much of the
literature emphasizes the role of curvature in preferences for the cost of risk. A common
finding is that log-utility with an exponential income process implies little aggregate risk,
and that high risk-aversion is needed to obtain even moderate costs of business cycles.

Here we highlight another channel that we find matters greatly to infer the magnitude
of aggregate income risk: the nonlinear relationship between the income process and the
aggregate factor. Indeed, our model allows for a general nonlinear relationship between
ηit and (Zt,Zt−1); see (1). These nonlinearities, and more specifically a countercyclical β (as
documented in Section 5.4), can generate higher amounts of risk than usually found.

To make our point formally, we consider a second-order small-noise expansion of CV
around a no-shock baseline. Given (ηit,Zt), let ηi,t+h = η̃

h
it(u

h−1
i,t+1,V

h−1
t+1 ) where uh−1

i,t+1 = (ui,t+ℓ)
h
ℓ=1

and Vh−1
t+1 = (Vt+ℓ)

h
ℓ=1 are the histories of micro and macro shock. We also let Ũ(η) = U(eη)

and (purely for notational convenience) transform uit so that it has zero mean—say, by
applying the Gaussian inverse CDF to the original uit. We multiply uh−1

i,t+1 by ςu and Vh−1
t+1

by ςV, so that η̃h
it(u

h−1
i,t+1,V

h−1
t+1 ) = ηi,t,h(ςu, ςV)|(ςu,ςV)=(1,1) for some function ηi,t,h(·). Similarly, we

get CV = CV(ςu, ςV)|(ςu,ςV)=(1,1) which we expand to second-order around (ςu, ςV) = (0, 0).
We focus on the macro risk measure, denoted CVmacro, where the experiment eliminates

only the macro shocks; analogous insights apply to its micro risk counterpart CVmicro that
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eliminates only micro shocks. The small-noise expansion (ςu = 0 and ςV → 0) delivers

CVmacro ≈ −

∑H
h=1 δ

h ∑h
ℓ=1

(
Ũ′′(η̃h

it(0, 0))
[
∂η̃h

it(0,0)
∂Vt+ℓ

]2

+ Ũ′(η̃h
it(0, 0))

[
∂2η̃h

it(0,0)

∂V2
t+ℓ

])
∑H

h=1 δ
hŨ′(η̃h

it(0, 0))
. (15)

In the case of log-utility U(eηit) = ηit, this reduces to

CVmacro ≈ −

H∑
h=1

δh−1(1 − δ)

(1 − δH)︸       ︷︷       ︸
>0, sum to 1

h∑
ℓ=1

∂2η̃h
it(0, 0)

∂V2
t+ℓ

︸        ︷︷        ︸
<0 for countercyclical β

. (16)

Equation (16) shows that the cost of business cycle risk depends crucially on how nonlinear
the income process is with respect to the aggregate shock Vt. For log-utility and a linear
income process, CVmacro is approximately zero. In contrast, it can be large when aggregate
shock exposures β are countercyclical, that is, when ∂2η̃h

it(0, 0)/∂V2
t+h = ∂βit/∂Zt < 0. This is

in line with our findings in Section 5.4 and reflects the self-amplifying nature of recessions.
More generally, when the utility function is not logarithmic, (15) shows that CVmacro

captures the combination of two effects: nonlinear income exposures to aggregate shocks,
and the curvature of the utility function. To the extent that, empirically, the coefficient of
relative risk aversion is often found to be low, the former effect will dominate. We verify
this in our empirical calculations next.

7.2 Empirical estimates of macro and micro costs of risk

We present below our compensating variation estimates against macro and micro shocks
for disposable income.27 To investigate the role of nonlinearities in the aggregate shocks,
in addition to computing risk measures from the full model estimated in Section 5, we also
consider a version in which β(u, η,Zt,Zt−1, x) is constant in (Zt,Zt−1), even though it can
depend on (u, η, x).28 In the restricted model, β is acylical in contrast to the countercyclical
β we find in our full model.

27In a model without endogenous labor supply, this is the relevant income measure to study consumption
and welfare. In that context, the indirect utility of persistent income U(eηit ) can be rationalized by a variety of
consumption functions: e.g., hand-to-mouth households if εit is mostly measurement error or unconstrained
permanent-income households if Et[e

yi,t+h | ηit, εit,Zt] ≈ eηit .
28We achieve this by restricting φ to a first-order polynomial in (Z̃,Z) in the specification described at the

end of Section 4. We fit this model to the data using the same approach as for our full model.
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(a) countercyclical β
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(b) acyclical β
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FIGURE 11. Risk quantification (disposable income).
Note: We show compensating variation for aggregate (upper panels) and idiosyncratic risk (lower panels)
for various ages x = xit and initial incomes ηit. Our full model (where β is countercyclical) is on the left and
a restricted acyclical-β model on the right. Lifetime utility is

∑(65−xit)/2
h=1 δh e(1−γ)ηi,t+h

(1−γ) with δ = (0.96)2 and γ = 3.
Gray shaded areas are 90% confidence bands.

Figure 11 illustrates the results. Left panels show risk calculations from our full model
while right panels show the restricted model, with macro risk above and micro risk below.
Period utility is U(c) = c1−γ/(1−γ) with risk aversion coefficient γ = 3. We set the biennial
discount factor to δ = (0.96)2 and we calibrate the horizon for lifetime utility to the number
of biennial periods until a notional retirement age of 65, i.e., H = (65 − xit)/2.

The main highlight from Figure 11 is the striking difference in the cost of business cycle
risk between linear and nonlinear income exposures to aggregate shocks. In line with our
analytical derivation, with an acyclical β (right), CVmacro is virtually zero, supporting the
conclusion in Lucas (2003) that eliminating business cycle fluctuations is second-order
from a welfare point of view. In stark contrast, a countercyclical β (left) produces CVmacro
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orders of magnitude higher, with households willing to give up between 2.2% and 5% of
their income each period in order to avoid cyclical fluctuations. Since our full model nests
the restricted one and CVmacro is statistically non-zero in the former, the evidence favors
the view that aggregate shocks have large welfare costs.29

Turning to the cost of idiosyncratic risk in Figure 11, perhaps unsurprisingly, CVmicro

is higher than CVmacro even in the countercyclical-β case, but there is ample variation over
age and across the income distribution. To give a sense, the cost of macro risk is less than
a tenth the cost of micro risk for older and richer households; it is more than a third for
young low-income households. This aligns with the tale of two skewnesses documented
in Section 5.5: For low-η units, micro risk is primarily upside risk while aggregate shocks
(given their self-amplifying effects) carry downside risks. As η increases (or as households
age), conditional skewness becomes more negative and the cost of micro risk increases.

Interestingly, the restricted model and our full model have similar implications for
CVmicro. The nonlinearities that underlie the aggregate and idiosyncratic components of
income risk are separate features, targeted by different parts of our framework. A natural
question is whether agents have different amounts of information about the macro- and
micro-relevant features, and how to account for it within the risk quantification exercise.
We leave this important question for future research.

8 Conclusion

In this paper we propose a nonlinear semi-structural framework for heterogeneous-agent
models with aggregate shocks. The nonlinear reduced form relationships our approach
can uncover are useful to assess the fit of such models and their implications. Allowing
for general nonlinear dynamics and rich macro-micro feedback, we study identification,
estimation and inference tools that leverage both macro and micro data.

In our empirical analysis of U.S. panel data on income, we find that the nonlinear
persistence and conditional skewness patterns documented in previous work are affected
by business cycle fluctuations. The persistence surface tilts in recessions, decreasing for
high-income households hit by a bad shock and increasing for low-income households,

29This conclusion changes very little for larger values of the risk aversion coefficient γ. Instead, the cost
of risk under countercyclical β is higher for larger persistence and variance of aggregate shocks, confirming
that the interaction between ∂βit/∂Zt and marginal utility is, empirically, the relevant dimension of the
income process for risk quantification.
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while skewness declines throughout the income distribution. We also find evidence of
nonlinear exposures to aggregate shocks, with higher sensitivity of income to macro
shocks during recessions and nontrivial interactions between macro and micro shocks.
Our results suggest that nonlinearities with respect to aggregate shocks matter for risk
quantification. One avenue to explore is how to account for model uncertainty in our risk
measurement approach.

Three natural extensions come to mind which we leave to future work. The first is to
examine the pass-through of aggregate and idiosyncratic income shocks to consumption.
This would follow Arellano et al. (2017) and Arellano et al. (2023), where consumption data
from the PSID was combined with the nonlinear income process to examine the impact of
income shocks on consumption. The results in those studies found a differential response
according to initial household assets and household heterogeneity. The framework de-
veloped in this paper would enable estimation of the transmission of aggregate shocks
through income to consumption as well as the differential impact of idiosyncratic income
shocks by aggregate state. Thus allowing an assessment of the extent by which insurance
to persistent income shocks varies across the cycle for different types of households, and
providing a more complete analysis of partial insurance and the welfare costs of income
risk across the business cycle.

The second extension relates to the primary components of household income: male
and female earnings. These two earnings measures embody the labor supply responses
of the spouses. In a linear partial insurance framework, Blundell, Pistaferri, and Saporta-
Eksten (2016) investigate the responses to wage shocks of spousal hours of work and
consumption in the PSID, finding significant responses to permanent and transitory wage
shocks. However, they do not consider non-linear wage processes and ignore the impact
of aggregate factors. Arellano et al. (2017) found that the permanent component of male
wages in the PSID follows a nonlinear persistent process. However, they did not examine
the joint process of male and female wages, nor the impact of aggregate factors. The
potential for uncovering important wage dynamics and effects of aggregate factors for
couples makes this an exciting area for future research.

A third extension, related to the second, concerns the zeros in the income data. Figure
2 showed a small but growing, and cyclical, proportion of zeros for male earnings in our
couples sample, a more stable and much smaller proportion of zeros for household earn-
ings and no zeros for disposable income. This is one reason why we have focused attention
on disposable income. Nonetheless, we have also drawn conclusions in comparison with

44



male and household earnings. Modeling the extensive margin requires some assumptions
on the process of selection. A natural framework is to assume missingness conditional
on history of the income process. But it is likely that aggregate shocks also play a role
here. Braxton, Herkenhoff, Rothbaum, and Schmidt (2021) develop a Kalman filter and
EM algorithm approach to incorporate observations with zero (or missing) earnings. By
specifying a law of motion for persistent earnings they show how assuming a model for
earnings upon re-entry can deliver identification under selection. In another recent paper,
Gobillon, Magnac, and Roux (2022) study earnings dynamics in French administrative
data assuming zeros are missing at random conditional on a set of factors drawn from
earnings history. We believe the nonlinear framework with aggregate factors developed
in our paper provides an ideal setting for incorporating the extensive margin into the
study of income dynamics over the cycle. We leave this extension to future work.

References

Ahn, S., G. Kaplan, B. Moll, T. Winberry, and C. Wolf (2018): “When Inequality Matters for

Macro and Macro Matters for Inequality.” NBER Macroeconomics Annual, 32, 1–75.

Almuzara, M. (2020): “Heterogeneity in Transitory Income Risk.” Working paper.

Almuzara, M. and V. Sancibrián (2024): “Micro Responses to Macro Shocks.” Federal Reserve

Bank of New York Staff Report 1090.

Altonji, J. G., A. A. Smith, and I. Vindangos (2013): “Modeling earnings dynamics.” Econometrica,

81, 1395–1454.

Amberg, N., T. Jansson, M. Klein, and A. Rogantini Picco (2022): “Five Facts about the Distribu-

tional Income Effects of Monetary Policy Shocks.” AER: Insights, 4, 289–304.

Andersen, A. L., N. Johannesen, M. Jørgensen, and J.-L. Peydró (2023): “Monetary Policy and
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There is an exogenous aggregate state zt that will drive both households’ employment
and firms’ productivity—and therefore innovations to zt will be a mix of labor supply and
TFP shocks. The aggregate state zt follows an AR(1) with serially independent innovations,

zt = Φzt−1 + Vt, Vt ∼ N(0, σ2
V). (A.1)

Households. Household i inelastically supplies skill sit = eηit+εit to firms in exchange for
the market wage wt. It begins period t with assets ait which lends to firms in exchange for
the market interest rate rt, and it consumes cit. If xit is the age of household i at time t, its
labor income is ỹit = wtsit = wte

ηit+εit with permanent and transitory components

ηit = ρηi,t−1 + βzt + uit, uit ∼ N(0, σ2
u), ηi,t−xit+1 ∼ N(µinit, σ

2
init),

εit ∼ N(0, σ2
ε).

(A.2)

Micro shocks (uit, εit) are i.i.d. across i and over t. The household’s budget constraint is

cit + ai,t+1 = ỹit + (1 + rt)ait,

with cit, ai,t+1 ≥ 0 and ai,t−xit+1 = 0 (households are born with no wealth).
Then, individual state variables are (ait, ηit, εit). As noted by Krusell and Smith (1998),

however, because wt and rt are determined in equilibrium (see (A.4) below) the state vector
for the household problem should also include the aggregate zt and the distribution of
individual states in the population. Let µht be the time-t joint distribution of assets and
skill components (ait, ηit, εit) for households of age h and let us collect all the age-specific
distributions in µt = {µ1t, . . . , µHt}.

Consumption and asset paths solve a finite-horizon sequential problem with value

v(ait, ηit, εit, zt, µt, xit) = max E

 H−xit∑
ℓ=0

δℓU(ci,t+ℓ)

∣∣∣∣∣∣∣ ηit, εit, zt, µt, xit

 ,
where the maximization is over stochastic consumption and asset plans that satisfy the
budget constraints. Optimal choices are given by two age-dependent policy functions,

cit = gc(ait, ηit, εit, zt, µt, xit),

ai,t+1 = ga(ait, ηit, εit, zt, µt, xit) = wte
ηit+εit + (1 + rt)ait − gc(ait, ηit, εit, zt, µt, xit).

(A.3)
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Firms. Firm j hires labor Lt( j) and rents capital Kt( j) in perfectly competitive markets, and
produces final goods via the constant-returns-to-scale technology, Yt( j) = F(Kt( j), eztLt( j)).
Profit maximization leads to conditions wt = eztFl(Kt/e

ztLt, 1) and rt = Fk(Kt/e
ztLt, 1) − dk

with Lt =
∫

J
Lt( j) dj and Kt =

∫
J
Kt( j) dj the total amounts of labor and capital demanded

by the firm sector, Fl and Fk the marginal products, and dk the depreciation rate.

Market clearing. In equilibrium, firms’ demand for labor and capital meets households’
supply of skills and assets, that is,

Lt = St ≡

H∑
h=1

Nht

∫
eη+ε dµht(a, η, ε), Kt = At ≡

H∑
h=1

Nht

∫
a dµht(a, η, ε),

Substituting into the conditions for profit maximization, we get the pricing functions

wt = eztFl(At/e
ztSt, 1) = w(zt, µt),

rt = Fk(At/e
ztSt, 1) − dk = r(zt, µt).

(A.4)

A recursive equilibrium for this economy is given by the policy functions in (A.3) and
the pricing functions in (A.4), reflecting optimal behavior of households and firms, and
market clearing. Given the laws of motion for exogenous macro and micro states (A.1)
and (A.2), the recursive equilibrium implies a functional law of motion for µt:

µt+1 = Π(µt, zt+1, zt).

Semi-structural reduced form and atomicity. Denote ηit = (ηit, εit, cit, ait) and Zt = (zt, µt).
The equilibrium from the stylized model can be represented as

ηit = Qη(ηi,t−1,Zt,Zt−1,uit),

Zt = QZ(Zt−1,Vt),
(A.5)

for some functions Qη and QZ, where the micro shocks are uit = (uit, εit) and the macro
shock is the innovation Vt in (A.1). This is a multivariate (or, more precisely, a functional)
version of Equations (1) and (3).1

A key insight from representation (A.5) is that it embodies the atomicity assumption;

1See Arellano and Bonhomme (2017) for a related point.
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see Assumption 3. Specifically, Zt is independent of the micro shock uit, for each individual
i, even though Zt itself contains the full distribution of micro states driven by those shocks.
The explanation lies in the iidness of uit over i coupled with the household population
being a continuum, which allows the law of large numbers to operate.

A difficulty with the macro side of (A.5) is that it is high-dimensional. Many structural
approaches rely on approximating µt by a finite-dimensional summary, often given by a
small collection of moments or quantiles.2 In our semi-structural reduced-form approach,
enriching the macro state variable Zt (and the macro measurement system Wt) along those
lines appears as a promising avenue to account for the role of general equilibrium effects
from the dynamics of micro distributions. This is in addition to including in Zt variables
that are informative about additional shocks and shifts in policy. In that sense, the class
of models that can be represented as (A.5) is wide and the main appeal of our approach is
that it may be possible to identify and estimate economically-relevant parameters without
the need to fully specify preferences, expectations formation, technology, frictions, etc.

B Identification

Proof of Proposition 1. Let sW, sZ and se be the spectral density matrices of Wt, Zt and et—all
well-defined by Assumption 1. By Gaussianity, the distribution of {Wt} is identified if and
only if sW is identified. For all ω ∈ [−π, π], the equation sW(ω) = ΛsZ(ω)Λ′ + sE(ω) has a
unique solution {Λ, sZ(ω), sE(ω)} under (a) and (b) by the steps in the proof of Geweke and
Singleton (1981, Proposition 2). Hence, sZ is identified and by Gaussianity so is QZ. □

Proof of Proposition 2. The argument follows from a simplified version of Almuzara (2020,
Proposition 1) without heterogeneity. Fix t and r such that t < r < t + S − 1 and consider

fyr−1,yr,yr+1|x,t
(y
−
, y, y+|x) =

∫
fyr−1|ηr,x,t

(y
−
|η, x) fyr,ηr|x,t

(y, η|x) fyr+1|ηr,x,t
(y+|η, x) dη.

2Examples are Krusell and Smith (1998), Reiter (2009), Winberry (2018) and Bayer and Luetticke (2020).
In our stylized model, although Zt is infinite-dimensional, it is stochastically singular as the only source of
randomness is Vt. Moreover, in the income process, µt only enters through the market wage wt:

yit = ln(ỹit) = ln w(zt, µt) + ηit + εit.

Under stationarity, we can write ln w(zt, µt) = w({Vt−ℓ}ℓ≥0) for some transfer function w(·). Subsuming this
term into ηit, one can think of the empirical specification in our paper as capturing in a parsimonious way
the composite effect (both direct and through equilibrium) of shocks {Vt}.
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This defines an integral operator equation that can be solved applying the diagonalization
method of Hu and Schennach (2008). By (a) and (b), the operator equation and its spectral
decomposition are well defined. Moreover, by the reasoning in Almuzara (2020, Remark
1), uniqueness of the decomposition is ensured by the normalization Et

[
yir

∣∣∣ ηir, xir
]
= ηir

where the subindex t indicates the expectation is an integral against the subpanel-specific
density fyr|ηr,x,t

.3 This analysis delivers identification of fyr−1|ηr,x,t
, fyr,ηr|x,t

and fyr+1|ηr,x,t
from

where the CDF Fη,r can be pinned down.
It follows that there is a known injective mapping from the observables ({Wt+s}

S−1
s=0 ,F

S
t )

to ({Wt+s}
S−1
s=0 , {Fη,t+s,t}

S−2
s=2 ) for each t. Hence, the latter is measurable with respect to the

former and P
S

is identified from PS. □

Proof of Proposition 3. Take r such that Fzr|W
S
t

is complete. For any η̃, η, x, and W,

E
[

Fη,r,t(η̃|η, x)
∣∣∣ WS

t =W
]
= E

[
P
(
ηir ≤ η̃

∣∣∣ηi,r−1 = η, xir = x, ωt

) ∣∣∣∣ WS
t =W

]
= E

[
P
(
ηir ≤ η̃

∣∣∣ηi,r−1 = η, xir = x,Zr,Zr−1,Gr

) ∣∣∣∣ WS
t =W

]
= E

[
P
(
ηir ≤ η̃

∣∣∣ηi,r−1 = η, xir = x,Zr,Zr−1

) ∣∣∣∣ WS
t =W

]
,

where the second line uses the fact thatωt encompasses (Zr,Zr−1,Gτ) and Assumption 2(b),
while the third uses independence between (Zr,Zr−1) and Gr given WS

t = (Wt, ...,Wt+S−1),
which comes from Assumption 1(b).

The previous equation can be written more explicitly as

E
[

Fη,r,t(η̃|η, x)
∣∣∣ WS

t =W
]
=

∫
Z

2
Fηr|ηr−1,xr,zr

(η̃|η, x,Zt,Zt−1) fzr|W
S
t
(Zt,Zt−1|W) d(Zt,Zt−1).

HereZ denotes the support of Zt and Fηr|ηr−1,xr,zr
is the CDF of ηir given (ηi,r−1, xir,Zr,Zr−1).

Now, the object on the left is identified by Proposition 2 and the density fzr|W
S
t

is identified
under Proposition 1. The only unknown in the equation above is Fηr|ηr−1,xr,zr

.
LetW be the support of Wt. Define the integral operators

[
Lηr|ηr−1,xr,W

S
t
h1

]
(η̃, η, x) =

∫
W

S
E
[

Fη,r(η̃|η, x)
∣∣∣ WS

t =W
]

h1(W) dW,[
Lzr|W

S
t
h1

]
(Zt,Zt−1) =

∫
W

S
fzr|W

S
t
(Zt,Zt−1|W) h1(W) dW,

3The completeness condition needed for this to work is assumed to hold relative to the space of absolutely
integrable functions on the relevant domain, as in Hu and Schennach (2008).

5



[
Lηr|ηr−1,xr,zr

h2

]
(η̃, η, x) =

∫
Z

2
Fηr|ηr−1,xr,zr

(η̃|η, x,Zt,Zt−1) h2(Zt,Zt−1) d(Zt,Zt−1),

so that our main equation is equivalent to (see Carrasco, Florens, and Renault, 2007)

Lηr|ηr−1,xr,W
S
t
= Lηr|ηr−1,xr,zr

Lzr|W
S
t
. (B.1)

By our previous discussion, Lηr|ηr−1,xr,W
S
t

and Lzr|W
S
t

are known to the researcher. Since Fzr|W
S
t

is complete, Lzr|W
S
t

has a right inverse and Equation (B.1) has solution

Lηr|ηr−1,xr,zr
= Lηr|ηr−1,xr,W

S
t
L−1

zr|W
S
t
.

which uniquely determines Fηr|ηr−1,xr,zr
. It follows that Qη in (1) is identified. □

C Estimation

Below we provide additional information about the estimation strategy outlined in Section
4. Section C.1 spells out the moments implied by our model. Section C.2 summarizes the
simulation-based techniques used in the E step of Algorithm 1. Section C.3 develops the
asymptotic analysis. Finally, Section C.4 discusses our bootstrap approach to inference.

C.1 Moment conditions

Our model implies two types of infeasible complete-data moments that pin down θ and
δt = (δinit,t, {δε,t+s}

S−1
s=0 ). We specify them explicitly for the parameter vector θwhich contains

vec{Θ(uℓ)} for ℓ = 1, . . . ,L together with θlo and θup.
Write νu(ω) = u − 1{ω < 0 }. For nodes u = u1, . . . ,uL, we will use the orthogonality

conditions from quantile regression (Koenker and Bassett, 1978),

mqr
it (θ,u) =

t+S−1∑
τ=t+1

[
ψ(ηi,τ−1, xiτ) ⊗ φ(Zτ,Zτ−1)

]
× νu

(
ηiτ − ψ(ηi,τ−1, xiτ)

′Θ(u)φ(Zτ,Zτ−1)
)
.

For the tails we will use the orthogonality conditions from exponential regression,

mlo
it (θ) =

t+S−1∑
τ=t+1

ψlo(ηi,τ−1,Zτ,Zτ−1, xiτ) × 1
{
ηiτ < ψ(ηi,τ−1, xiτ)

′Θ(u1)φ(Zτ,Zτ−1)
}
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×

[
ψ(ηi,τ−1, xiτ)

′Θ(u1)φ(Zτ,Zτ−1) − ηiτ − exp
(
ψlo(ηi,τ−1,Zτ,Zτ−1, xiτ)

′θlo

) ]
,

mup
it (θ) =

t+S−1∑
τ=t+1

ψup(ηi,τ−1,Zτ,Zτ−1, xiτ) × 1
{
ηiτ > ψ(ηi,τ−1, xiτ)

′Θ(uL)φ(Zτ,Zτ−1)
}

×

[
ηiτ − ψ(ηi,τ−1, xiτ)

′Θ(uL)φ(Zτ,Zτ−1) − exp
(
ψup(ηi,τ−1,Zτ,Zτ−1, xiτ)

′θup

) ]
.

Thus, letting ȳS
it = {yi,t+s, xi,t+s}

S−1
s=0 , η̄S

it = {ηi,t+s}
S−1
s=0 and Z̄S

t = {Zt+s}
S−1
s=0 , the moment conditions

mθ(θ; ȳS
it, η̄

S
it, Z̄

S
t ) arise from stacking the conditions mqr

it (θ,uℓ) for ℓ = 1, . . . ,L together with
mlo

it (θ) and mup
it (θ). At the true parameter value θ0, we obtain

E
[

mθ

(
θ0; ȳS

it, η̄
S
it, Z̄

S
t

) ]
= 0dim(θ)×1.

The moments mδ(δt; ȳS
it, η̄

S
it) associated to δt are also a combination of quantile and

exponential regression orthogonality conditions. At the true value δ0t,

E
[

mδ

(
δ0t; ȳS

it, η̄
S
it

) ]
= 0dim(δt)×1.

C.2 Techniques for posterior sampling

Macro posterior: Kalman recursions. Our analysis relies on the macro linear state-space
model (3) where the observable vector Wt = ΛZt+et has nW = 5 entries: GDP, consumption,
investment, the unemployment rate and hours worked, all transformed and dentrended
as explained in Section 5.1. The data are quarterly and span the period 1960Q1-2019Q4.

We model the univariate state Zt and each entry in Et as AR(2) processes:

Zt = Φ1Zt−1 + Φ2Zt−2 + σVVt,

e jt = ϕ j1e j,t−1 + ϕ j2e j,t−2 + σE, jν jt, j = 1, . . . ,nW,

where Vt, ν1t, . . . , νnw,t
are i.i.d. standard normal and mutually independent. Moreover, as

stated in the text, we normalize the entry of Λ that corresponds to GDP to unity so that Zt

is measured in units of GDP per capita relative to its low-frequency trend.
We perform estimation of parametersλ = (Λ,Φ1,Φ2, σV, {ϕ j1, ϕ j2, σE, j}

nW
j=1) and filtering of

latent variables Zt, {e jt}
nW
j=1 jointly via Gibbs sampling using (i) a flat prior on the parameters

and (ii) a diffuse prior on the initial conditions of the latent variables.
The Gibbs sampling for our linear state-space model is a standard technique that builds

7



on the following conditional distributions:

(a) Given {Wt,Zt}, the distribution of parameters can be written in terms of easy-to-draw
multivariate normal and inverse gamma random variables.

(b) Given parameters, the distribution of {Zt, {e jt}
nW
j=1} is multivariate normal and can be

efficiently sampled from using the algorithm of Durbin and Koopman (2002).

We alternate between (a) and (b) for a total of 12,000 draws, burning in the first 2,000.
We then retain 1 in 2 parameter draws (5,000 in total) and 1 in 20 latent variable draws (500
in total). We set λ̂ to the median of the parameter draws and we use each latent variable
draw in a different iteration of Algorithm 1 for Step 1(i). Inspection of parameter and latent
variable paths (available in our replication package) suggests very good convergence.

Micro posterior: Sequential Monte Carlo. Step 1(ii) in Algorithm 1 requires sampling,
for each i and t, the distribution of {ηi,t+s}

S−1
s=0 conditional on {yi,t+s, xi,t+s,Zt+s}

S−1
s=0 taking Qη,

Qε,t and Qinit,t (evaluated at certain parameter values θ, δε,t and δinit,t) as given. We do so
by Sequential Monte Carlo.4

The measurement equation for the problem is yi,t+s = ηi,t+s + εi,t+s for s = 0, . . . ,S − 1
with state variable ηi,t+s, a first-order Markov process. Let Xi,t+s = (xi,t+s,Zt+s,Zt+s−1)′.

To implement Sequential Monte Carlo, we need two distinct proposal distributions
with densities qinit,t(ηit|yit, xit) and qη(ηi,t+s|ηi,t+s−1, yi,t+s,Xi,t+s) from which to draw particles.
We discuss the calibration of qinit,t and qη below. We also use fη, finit,t and fε,t to denote the
densities associated to the quantile functions Qη, Qinit,t and Qε,t.

The Sequential Monte Carlo algorithm generates K particles {{ηk
i,t+s}

K
k=1}

S−1
s=0 as follows:

(s = 0) ◦ If yit is missing:

* Draw independent particles {ηk
it}

K
k=1 from the unconditional density finit,t.

* Set the weights {wk
it}

K
k=1 to wk

it = 1.

◦ If yit is not missing:

* Draw independent particles {ηk
it}

K
k=1 from the proposal, ηk

it ∼ qinit,t(·|yit, xit).

4See Creal (2012) for a review of Sequential Monte Carlo methods and Arellano, Blundell, Bonhomme,
and Light (2023) for an application to models with time-varying latent variables.
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* Set the weights {wk
it}

K
k=1 to

wk
it =

finit,t(η
k
it|xit) · fε,t(yit − η

k
it|xit)

qinit,t(η
k
it|yit, xit)

.

◦ If ESSt = 1/
∑K

k=1(wk
it)

2 < ESS, resample particles from the discrete distribution
supported on {ηk

it}
K
k=1 with probabilities proportional to {wk

it}
K
k=1.

(s > 0) ◦ If yi,t+s is missing:

* Draw particles {ηk
i,t+s}

K
k=1 from the conditional density fη(·|η

k
i,t+s−1,Xi,t+s).

* Set the weights {wk
i,t+s}

K
k=1 to wk

i,t+s = wk
i,t+s−1.

◦ If yi,t+s is not missing:

* Draw particles {ηk
i,t+s}

K
k=1 from the proposal, ηk

i,t+s ∼ qη(·|η
k
i,t+s−1, yi,t+s,Xi,t+s).

* Set the weights {wk
i,t+s}

K
k=1 to

wk
i,t+s = wk

i,t+s−1 ×
fη(η

k
i,t+s|η

k
i,t+s−1,Xi,t+s) · fε,t(yi,t+s − η

k
i,t+s|xi,t+s)

qη(η
k
i,t+s|η

k
i,t+s−1, yi,t+s,Xi,t+s)

.

◦ If ESSt+s = 1/
∑K

k=1(wk
i,t+s)

2 < ESS, resample particles.

This algorithm can be efficiently vectorized over k and parallelized across units i. We
use K = 5, 000 particles, choosing one of them at random (with weights {wk

i,t+S}
K
k=1) at the

end of the algorithm as the draw η̄S
it( j) = {ηi,t+s( j)}S−1

s=0 in Step 1(ii) of Algorithm 1. We also
set ESS = K/4 as the threshold for resampling.

We calibrate the proposals as follows. We take qinit,t(ηit|yit, xit) to be the density of ηit

conditional on (yit, xit) implied by the model

yit = ηit + εit, εit ∼ N(0, s2
ε),

ηit = ψinit(xit)
′binit,t + uit, uit ∼ N(0, s2

init),

where ψinit is the same vector of basis functions used for Qinit,t and we update binit,t, s
2
init, s

2
ε

by least squares in each iteration of Algorithm 1. The proposal then becomes

qinit,t(ηit|yit, xit) = N(µinit,t(yit, xit), ω
2
init),

µinit,t(yit, xit) = (1 − ϕinit)ψinit(xit)
′binit,t + ϕinityit with ϕinit = s2

init/(s
2
init + s2

ε),
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ω2
init = (1/s2

init + 1/s2
ε)
−1.

For qη(ηi,t+s|ηi,t+s−1, yi,t+s,Xi,t+s) we use the density of ηi,t+s conditional on (ηi,t+s−1, yi,t+s,Xit)
implied by the model

yi,t+s = ηi,t+s + εi,t+s, εi,t+s ∼ N(0, s2
ε),

ηi,t+s = ψη(ηi,t+s−1,Xi,t+s)
′bη + ui,t+s, ui,t+s ∼ N(0, s2

η),

where ψη(ηi,t+s−1,Xi,t+s) = ψ(ηi,t+s−1, xi,t+s) ⊗ φ(Zt+s,Zt+s−1) contains the basis functions used
for Qη and we update bη, s

2
η by least squares in each iteration too. The proposal is then

qη(ηi,t+s|ηi,t+s−1, yi,t+s,Xi,t+s) = N(µη(ηi,t+s−1, yi,t+s,Xi,t+s), ω
2
η),

µη(ηi,t+s−1, yi,t+s,Xi,t+s) = (1 − ϕη)ψη(ηi,t+s−1,Xi,t+s)
′bη + ϕηyi,t+s with ϕη = s2

η/(s
2
η + s2

ε),

ω2
η = (1/s2

η + 1/s2
ε)
−1.

As a practical matter, to ensure thorough exploration of the tails of the micro posterior,
we switch from normal to Laplace (with the same location and scale) below the 2.5 and
above the 97.5 percentiles of the proposal distributions.

C.3 Asymptotic approximations

We develop next the large sample properties of θ̂ and the plug-in estimator γ̂ = γ(θ̂). Our
asymptotic analysis assumes Nt,T→∞ with S fixed. The data generating process (DGP)
is given by Assumptions 1, 2, and 3 with the flexible parametric specification in (7), (8)
and (9), with regularity conditions.5 In Algorithm 1, when J is fixed, θ̂ depends not just
on the data but on the realizations of latent variables drawn in the E step. In practice, J is
set to a large number to reduce the influence of simulation noise and starting values. In
light of that, here we focus on the limit case J→∞.6

5As discussed in the text, we hold the dimension of the basis functions (i.e., ψ, φ, ψinit, ψε, ψlo, ψup, etc.)
and L fixed. Alternatively, these could be viewed as tuning parameters that grow with the sample size in a
nonparametric sieve approach (Newey, 1997; Chen, 2007) but we leave that for future research.

6Analyses of the fixed-J case for cross-sectional and short-panel setups can be found in Nielsen (2000)
and Arellano and Bonhomme (2016).

10



Thus, we view the estimator as the (approximate) solution to

1
T

T∑
t=1

Mθ,t(θ̂, δ̂t, λ̂) = 0,

Mδ,t(θ̂, δ̂t, λ̂) = 0, t = 1, . . . ,T.

where Mθ,t(θ, δt, λ) =
∫ [

N−1
t

∑
i∈It

∫
mθ(θ, ȳS

it, η̄
S, Z̄S) f (η̄S

|ȳS
it, Z̄

S, θ, δt) dη̄S
]

f (Z̄S
|W, λ) dZ̄S

and Mδ,t(θ, δt, λ) =
∫ [

N−1
t

∑
i∈It

∫
mδ(δ, ȳ

S
it, η̄

S) f (η̄S
|ȳS

it, Z̄
S, θ, δt) dη̄S

]
f (Z̄S
|W, λ) dZ̄S.

Doing a Taylor expansion to the two equations above and using Dpq,t to denote a matrix
of first derivatives of Mp,t for p = θ, δwith respect to q = θ, δ, λwhere each row is evaluated
at a possibly different intermediate value between (θ̂, δ̂t, λ̂) and the true value (θ0, δ0t, λ0),

√

T(θ̂ − θ0) =

 1
T

T∑
t=1

(Dθδ,tD
−1
δδ,tDδθ,t +Dθθ,t)


−1

×

 1
√

T

T∑
t=1

Mθ,0t +
1
√

T

T∑
t=1

Dθδ,tD
−1
δδ,tMδ,0t +

 1
T

T∑
t=1

(Dθδ,tD
−1
δδ,tDδλ,t +Dθλ,t)

 · √T(̂λ − λ0)


where Mp,0t =Mp,t(θ0, δ0t, λ0) for p = θ, δ. Assuming that our parametric model is correctly
specified and standard regularity conditions on λ̂, one can show that

1
T

T∑
t=1

(Dθδ,tD
−1
δδ,tDδθ,t +Dθθ,t)

p
−−−−→ Dθθ,0,

1
T

T∑
t=1

(Dθδ,tD
−1
δδ,tDδλ,t +Dθλ,t)

p
−−−−→ Dθλ,0,

where Dθθ,0 and Dθλ,0 are two fixed matrices and Dθθ,0 is non-singular.
One can also apply a central limit theorem to the scaled averages to show that

√

T


T−1 ∑T

t=1 Mθ,0t

T−1 ∑T
t=1 Dθδ,tD

−1
δδ,tMδ,0t

λ̂ − λ0

 d
−−−−→ N(0,Ω0)

for some symmetric, positive semi-definite matrixΩ0. Collecting all pieces, the asymptotic
distribution of θ̂ follows from Slutsky, whereas that of γ̂ follows from the delta method.
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C.4 Bootstrap approach

The asymptotic analysis suggests that a parametric bootstrap approach can be justified for
statistical uncertainty quantification. It also highlights the role of the omitted aggregate
factor Gt and the need to account for the cross-sectional dependence that such factors may
induce. In addition, some objects of interest are primarily identified by cross-sectional
variation. A key advantage of the parametric bootstrap is that it allows us to replicate
the unit-level dependence caused by sampling the same units into different subpanels, a
natural feature in our time series of panels framework.

Omitted aggregate factors. We model the cross-sectional dependence as follows. We let
Gt = (Gη,t,Gε,t,Ginit,t)

′ where entries are i.i.d. uniformly distributed on (0, 1) and mutually
independent. Then, we assume the micro-level errors in our model are

uit = Φ
(
cηΦ

−1(Gη,t) +
√

1 − c2
ηΦ
−1(ũit)

)
,

vit = Φ

(
cεΦ

−1(Gε,t) +
√

1 − c2
εΦ
−1(ṽit)

)
,

νi,t0
= Φ

(
cinitΦ

−1(Ginit,t0
) +

√
1 − c2

initΦ
−1(ν̃i,t0

)
)
,

where ũit, ṽit, ν̃i,t0
are i.i.d. uniformly distributed on (0, 1) and mutually independent. The

parameters cη, cε and cinit are pinned down by the common variability in the micro-level
errors—e.g., ĉη = [T−1 ∑T

t=1(
∑

i∈It
Φ−1(uit)/Nt)

2]1/2 consistently estimates cη as T,Nt → ∞.
Given estimates θ̂, {δ̂t}

T
t=1 and λ̂, we estimate cη, cε and cinit by performing steps 1(i) and

1(ii) of Algorithm 1, computing the implied ranks uit, vit and νi,t0
, and using them as above

(we repeat this for 100 iterations, averaging the parameter paths across iterations).

Unit overlap. The time series of panels data structure allows the same unit to be part
of different subpanels. Because our model is biennial, it already specifies the cross-panel
dependence if the year gap between two subpanels is even: apply Equation (1) recursively.

When the same unit i appears in consecutive odd- and even-year panels (denoted t and
t′) we assume the following for the micro-level errors net of their common component:

(
Φ−1(ũit) Φ

−1(ũit′)
)′
∼ N

0,

 1 dη
dη 1

 ,
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(
Φ−1(ṽit) Φ

−1(ṽit′)
)′
∼ N

0,

 1 dε
dε 1

 ,
(
Φ−1(ν̃it) Φ

−1(ν̃it′)
)′
∼ N

0,

 1 dinit

dinit 1

 .
We estimate the parameters dη, dε and dinit within the same algorithm described above for
cη, cε and cinit. To this end, we use the correlation of the idiosyncratic components of the
ranks across any two consecutive years.

Implementation. Given estimates of (cη, cε, cinit, dη, dε, dinit), it is easy to obtain bootstrap
samples that reflect the estimated degrees of cross-sectional and unit-level dependence.
The following procedure reproduces the repetition and overlap patterns in the data:

1) Simulate the time series of aggregate factors {Gη,t,Gε,t,Ginit,t}
T
t=1.

2) For each unit i determine the first (t0) and last (t1) period in the dataset. Next,

(i) draw the path of idiosyncratic shocks {ũit, ṽit, ν̃it}t0≤t≤t1
imposing the correlations

dη, dε and dinit across consecutive periods;

(ii) combine aggregate and idiosyncratic factors to obtain {uit, vit, νit}t0≤t≤t1
imposing

the cross-sectional dependence implied by cη, cε and cinit;

(iii) for the first two periods, use Qinit,t and νit to generate ηit;

(iv) for every other period, use Qη and uit to generate ηit;

(v) for all periods, use Qε,t and vit to generate εit;

(vi) form yit = ηit + εit for all t0 ≤ t ≤ t1.

3) Assign the data to the appropriate unit and time cell.

13



D Additional empirical results

This appendix expands on three sets of empirical results. Figure D.1 reports our nonlinear
measure of aggregate risk exposure β(u, η,Zt,Zt−1, x) along quantiles of the rank u and past
persistent income η, as well as averaged over η. This complements Figure 6 in the text.
The main nonlinearity in the figure is the increase in exposure to aggregate shocks during
recessions and its decline during expansions. This form of aggregate state dependence at
the micro level is not captured by linear models and plays a paramount role in macro risk
calculations, as discussed in Section 7.
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(c) disposable income
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FIGURE D.1. Nonlinear exposure to aggregate shocks.
Note: We report the aggregate risk exposure β(u, η,Zt,Zt−1, x) by quantile of the shock u = uit and of past
persistent income η = ηi,t−1 (upper panels), or averaged across η = ηi,t−1 (lower panels). Here, age x = xit is
averaged out, Zt−1 = Z̃ss and Zt is a recession Z̃r, the steady state Z̃ss or an expansion Z̃e (see Section 5.1).
Shaded areas in the lower panels represent 90% pointwise confidence bands.

Figure D.2 displays estimates of dispersion and kurtosis, together with their differences
between recessions and expansions. This complements Figure 7 in the text that documents
the cyclical pattern of skewness. We find a slight increase in the dispersion and decrease
in the kurtosis of persistent income shocks in recessions compared to expansions, but they
are generally not statistically non-zero. Although different in methodology and data, our
results are in line with the findings in Guvenen, Ozkan, and Song (2014).
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dispersion
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FIGURE D.2. Measures of dispersion and kurtosis.
Note: The first and third rows report the dispersion disp(η,Zt,Zt−1, x) and kurtosis kurt(η,Zt,Zt−1, x) defined
in footnote 8 by past persistent income η = ηi,t−1 where age x = xit is averaged out, Zt−1 = Z̃ss and Zt is a
recession Z̃r, the steady state Z̃ss or an expansion Z̃e (see Section 5.1). The second and fourth rows show the
gaps between recession and expansion. Shaded areas represent 90% confidence bands.
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E Additional material on impulse response analysis

This appendix expands Section 6 in various directions. We relate impulse responses to
derivatives with respect to some macro and micro shocks in Section E.1. We characterize
analytically the link between impulse responses, nonlinear persistence and exposure to
aggregate shocks in Section E.2. Sections E.3, E.4 and E.5 contain additional results.

E.1 Perturbations and shocks

Having defined impulse responses using perturbations of state variables in the main text,
we can next relate them to derivatives with respect to certain macro and micro shocks,
which we will denote Ṽt and ũi,t−1. In other words, there is a duality relation between
deterministic perturbations of state variables and the stochastic disturbances that embody
macro and micro sources of income risk. More specifically,

IRFηZ(h; δ) =
E
[
ηi,t+h

∣∣∣ ηi,t−1, Ṽt = δ,Zt−1

]
− E

[
ηi,t+h

∣∣∣ ηi,t−1, Ṽt = 0,Zt−1

]
δ

,

IRFηη(h, δ) =
E
[
ηi,t+h−1

∣∣∣ ũi,t−1 = δ, ηi,t−2,Zt,Zt−1

]
− E

[
ηi,t+h−1

∣∣∣ ũi,t−1 = 0, ηi,t−2,Zt,Zt−1

]
δ

and, for infinitesimal changes,

IRFηZ(h) =
∂E

[
ηi,t+h

∣∣∣ ηi,t−1, Ṽt,Zt−1

]
∂Ṽt

, IRFηη(h) =
∂E

[
ηi,t+h−1

∣∣∣ ũi,t−1, ηi,t−2,Zt,Zt−1

]
∂ũi,t−1

.

The implied shocks are given by

Ṽt = g (QZ(Zt−1,Vt)) − g(Zb),

ũi,t−1 = g
(
Qη(ηi,t−2,Zt−1,Zt−2,ui,t−1)

)
− g(ηb),

and lead to the representations

Zt = QZ(Zt−1,Q
−1
Z [Zt−1, g

−1(g(Zb) + Ṽt)]),

ηi,t−1 = Qη(ηi,t−2,Zt−1,Zt−2,Q
−1
η [ηi,t−2,Zt−1,Zt−2, g

−1(g(ηb) + ũi,t−1)]).

These representations are local to the benchmark values and to the normalization rule g.
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E.2 Impulse responses, nonlinear persistence and aggregate exposures

To get some intuition on the role of nonlinearities in shaping impulse responses we look
at the derivative-based definitions. First, by recursive substitution on Equation (3), let

Zt+h = qZ,h(Vh−1
t+1 ,Zt) =

h−1∑
ℓ=0

ΦℓΣ1/2
V Vt+h−ℓ + Φ

hZt, h = 0, 1, . . . (E.1)

Combining Equations (13) with (E.1), we have for h = 1, 2, . . .

qη,h(uh
it,V

h−1
t+1 , ηi,t−1,Zt,Zt−1) = Qη

(
qη,h−1(uh−1

it ,Vh−2
t+1 , ηi,t−1,Zt,Zt−1), . . .

qZ,h(Vh−1
t+1 ,Zt), qZ,h−1(Vh−2

t+1 ,Zt),ui,t+h

)
,

with the recursion beginning at qη,0(uh
it,V

h−1
t+1 , ηi,t−1,Zt,Zt−1) = Qη

(
ηi,t−1,Zt,Zt−1,uit

)
.

It will also be useful to define the following random variables:

ρit = ρ(uit, ηi,t−1,Zt,Zt−1), βit = β(uit, ηi,t−1,Zt,Zt−1), γit = γ(uit, ηi,t−1,Zt,Zt−1),

where, similarly to ρ and β, the nonlinear measure γ is

γ(uit, ηi,t−1,Zt,Zt−1) =
∂Qη(ηi,t−1,Zt,Zt−1,uit)

∂Zt−1
.

In particular, ρit and βit are the values of the nonlinear persistence and household exposure
to aggregate shocks defined in Section 2 for a given realization of micro and macro state
variables and shocks, andγit measures the nonlinear exposure of the persistent component
of income to the lagged macro variable Zt−1.

The impulse responses of the macro state using our methodology is

IRFZZ(h) = lim
δ→0

E
[

Zt+h

∣∣∣ Zt = Zb + ∆(δ)
]
− E

[
Zt+h

∣∣∣ Zt = Zb
]

δ
= Φh

×

{
g′(Zb)

}−1
.

Next, taking derivatives and exchanging the order of differentiation and integration,

IRFηZ(h) = E

 h∑
ℓ=0

βi,t+h−ℓΦ
h−ℓ

 ℓ−1∏
j=0

ρi,t+h− j


∣∣∣∣∣∣∣ ηi,t−1 = η

b,Zt,Zt−1

 × {
g′(Zb)

}−1
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+ E

 h−1∑
ℓ=0

γi,t+h−ℓΦ
h−ℓ−1

 ℓ−1∏
j=0

ρi,t+h− j


∣∣∣∣∣∣∣ ηi,t−1 = η

b,Zt,Zt−1

 × {
g′(Zb)

}−1
,

IRFηη(h) = E

 h∏
ℓ=1

ρi,t+h−ℓ

∣∣∣∣∣∣∣ ηi,t−1 = η
b,Zt,Zt−1

 × {
g′(ηb)

}−1
.

The expressions for IRFZZ(h), IRFηZ(h) and IRFηη(h) have two parts: The first is independent
of the rule g, whereas the second part is independent of the horizon h. Hence the first part
sets the dynamic propagation of uncertainty and is fully determined by the macro state
persistence parameter Φ, the nonlinear persistence measure ρit and the micro elasticities
to macro shocks βit and γit. They generalize the dynamic transmission patterns from the
linear homogeneous income process, ηit = ρηi,t−1 + βZt + γZt−1 + uit, for which

IRFηZ(h) =

β h∑
ℓ=0

Φh−ℓρℓ + γ
h−1∑
ℓ=0

Φh−ℓ−1ρℓ
 × {

g′(Zb)
}−1
,

IRFηη(h) = ρh
×

{
g′(ηb)

}−1
,

by introducing dependence on the potential history of future shocks.
The second part fixes the scale of the IRF and is determined by the rule g. For example,

g′(z) is one for the unit rule and the conditional density of the state being perturbed at
the benchmark value for the rank rule. It follows that, for infinitesimal perturbations, all
IRFs are scaled versions of unit-rule IRFs, which in turn reflect nonlinear persistence and
micro exposures to macro shocks.

The derivation offers insights into the relationship between the persistence of macro
and micro shocks. Empirically, we find low persistence of macro shocks (IRFηZ(h) roughly
proportional to IRFZZ(h) indicating a short-lived response) but high persistence of micro
shocks (IRFηη(h) decays slowly). These patterns raise the question of whether a nonlinear
dynamic common factor restriction analogous to that of linear partial adjustment models
(Griliches, 1961, 1967; Sargan, 1964, 1980) holds. Specifically, if

γi,t+1 = −ρi,t+1βit, (E.2)

then

IRFηZ(h) = E
[
βi,t+h

∣∣∣ ηi,t−1 = η
b,Zt,Zt−1

]
IRFZZ(h).
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Constructing a test of this functional restriction is beyond the scope of our paper, but a look
at our estimates does not offer conclusive evidence in its favor. For example, according to
the point estimates for disposable income, the average γi,t+1 is around -1, the average ρi,t+1

is around 0.92 and the average βit is 1.3 in a typical recession, 0.6 in steady state and 0.2
in an mild expansion. The three quantities also vary substantially over the distribution
of past persistent income and micro ranks. All of this suggests a departure from the
dynamic common factor restriction (E.2), the size of which depends on macro and micro
state variables.

E.3 Additional IRF figures: comparison to MBC shocks

Figure E.1 compares the IRF of each entry in Wt to shock Vt from our baseline specification
(red, diamonds) against the IRFs to the MBC shock of Angeletos, Collard, and Dellas (2020)
obtained by targeting the unemployment rate FEVD (blue, circles).
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FIGURE E.1. IRFs of Wt to Vt and MBC shock
Note: We show IRFs of Wt to the following: the Vt shock from our baseline model (red, diamonds), the MBC
shock from Angeletos et al. (2020) (blue, circles), a Vt shock from a dynamic factor model with a Minnesota
prior (green, squares), and an MBC shock from a 5-variable VAR(2) with a flat prior (yellow, crosses).

The takeaway from Figure E.1 is that the two approaches generally agree on the relative
impact among variables and the cumulative impact over the first two years, but they differ
on their distribution over time. Specifically, our baseline specification places a larger share
of the impact on the first year compared to the original MBC shock.

While the discrepancy is small relative to the statistical uncertainty around the IRFs,
part of it can be attributed to the choice of prior. In our case, the dynamic factor structure
already achieves, without further penalization, adequate dimension reduction. Instead,
the 10-variable VAR(2) underlying the original MBC shock IRFs is based on a Minnesota
prior. This choice is understandable, but penalizes deviations from unit roots that may bias
the estimated persistence upward. To explore the issue, Figure E.1 shows two additional
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estimates: IRFs obtained from a dynamic factor model under a Minnesota prior (green,
squares), and IRFs for an MBC-type shock from a small 5-variable VAR(2) on Wt under a
flat prior (gold, crosses).7 Consistent with our claim, the former mimics the persistence of
the original MBC responses while the latter matches our baseline closely. But reassuringly,
the small-model MBC shock and our Vt shock are highly correlated as seen in Figure E.2.
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FIGURE E.2. Vt and MBC shocks
Note: We plot posterior median estimates of Vt from our baseline (red, diamonds) and the MBC shock from
a 5-variable VAR(2) model with a flat prior (gold, crosses). Red areas indicate NBER-dated recessions.

It follows from the preceding discussion that pinning down the persistence in macro
IRFs is empirically difficult. However, our main results are robust to this feature. Because
there is very little filtering uncertainty about Zt, the choice of prior has practically no effect
on the estimation of the income process, and objects such as ρ(·), sk(·) and β(·) remain the
same. Higher persistence in Zt produces slower decay in IRFηZ(h) compared to Figure 8
and slightly larger costs of aggregate risk compared to Figure 11, but these results cannot
be distinguished statistically from our baseline.8

E.4 Additional IRF figures: local projection estimates

In Figure E.3 we report estimates of macro impulse responses (multiplied by−1 to emulate
the trajectory after a negative shock) obtained by panel local projections. To be concrete,
for each horizon h, we regress yi,t+h on Zt controlling for yi,t−1, Zt−1, a second-order Hermite

7For the factor model we set lag lengths to 4 and calibrate the prior to E
[
Φℓ

]
= E

[
ϕ jℓ

]
= 1{ ℓ = 1 } and

Var
(
Φℓ

)
= Var

(
ϕ jℓ

)
= 0.5/ℓ2. For the MBC shock, we target the unemployment rate FEVD.

8These robustness checks are available in our replication package.
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polynomial on age xit and unit fixed effects. We compute the t-LAHR confidence intervals
proposed by Almuzara and Sancibrián (2024) to assess statistical precision.
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FIGURE E.3. Local projection estimates of macro impulse responses
Note: Panels (a), (b) and (c) display IRFs of yit to a negative macro shock for different income definitions: Zt

is scaled by the standard deviation of log GDP per capita for comparability with the IRFs in the main text.
Shaded areas are 90% t-LAHR pointwise confidence bands.

One advantage of this exercise is that pooling the household-level data from the time
series of panels allows us to measure the average impulse responses at the annual (rather
than biennial) frequency. This reveals a significant response to macro shocks on impact
(h = 0) and in the first year following the shock (h = 1).9 On the other hand, although
these responses correspond to yit, not to ηit, the estimates are quantitatively similar to the
ones in Figure 8, with larger responses for male earnings compared to disposable income.

E.5 Additional IRF figures: positive shocks

Figure E.4 shows responses to positive macro and micro perturbations, complementing
Figure 8 (panels (b) to (d)) and Figure 10. For the estimates of IRFηZ on the upper panels we
apply a positive perturbation to Zt around the steady state benchmark Zb = Z̃ss calibrated
to δ = σV with σ2

V = Var( Zt

∣∣∣ Zt−1 ). This emulates a mild expansionary aggregate shock.
The implied trajectory for Zt (annualized and scaled to log GDP per capita) is the mirror
image of panel (d) in Figure 8, and we refer the reader to the main text to get a sense of
the macro implications of the underlying experiment.

For the estimates of IRFηη on the lower panels we apply a negative perturbation δ that
implies a 10% increase in ηi,t−1. Similar to Figure 10, we hold Zt and Zt−1 at their steady
state value Z̃ss and multiply responses by 0.1 for ease of interpretation.

9The figure is also indicative of some overshooting for h = 3, 4, 5, albeit not statistically significant.
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The main takeaway from the figure is that, as in our analysis of negative perturbations,
macro responses are short-lived while micro responses are more persistent. The difference
with the negative-shock case is that IRFηZ displays a stronger overshooting effect (i.e., the
response crossing the zero line) after h = 2, particularly for disposable income.
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FIGURE E.4. Macro and micro impulse responses to positive shocks
Note: Panels (a), (b) and (c) display IRFs of ηit to positive macro (upper panel) and micro (lower panel)
shocks for different income measures with Zb

t = Zt−1 = Z̃ss and ηb
i,t−1 set to the 10th (low), 50th (middle) and

90th (high) percentiles of the persistent income distribution. Shaded areas are 90% confidence bands.
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