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Abstract

We introduce a model of dynamic matching with transferable utility, extending
the static model of Shapley and Shubik (1971). Forward-looking agents have
individual states that evolve with current matches. Each period, a matching
market with market-clearing prices takes place. We prove the existence of
an equilibrium with time-varying distributions of agent types and show it is
the solution to a social planner’s problem. We also prove that a stationary
equilibrium exists. We introduce econometric shocks to account for unobserved
heterogeneity in match formation. We propose two algorithms to compute a
stationary equilibrium. We adapt both algorithms for estimation. We estimate
a model of accumulation of job-specific human capital using data on Swedish

engineers.
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1 Introduction

This paper introduces a tractable model of one-to-one, two-sided dynamic matching.
Relationship formation is pervasive in economics, and appears in a wide range of
settings, such as marriage, labor or health care. Matching models are a key class of
analytical tools that predict the formation of relationships. Consequently, they have
become important empirical tools alongside the availability of datasets on formed
relationships. In these models, agents on both sides on the market are paired based
on their observable characteristics, or types. The value generated from a match, usu-
ally referred to as the match surplus, depends critically on the interaction of these
types. This interdependence makes the two sides of the market economic comple-
ments. For instance, on labor markets, where workers match with firms, the match
surplus depends on the worker’s level of human capital and the firm’s productivity.
The surplus created through matching is not equally divided but is instead competi-
tively allocated across agents based on their desirability (how much surplus they can
potentially produce) and their scarcity (the relative number of agents of a given type
present on the market). In the labor market, the share of the surplus obtained by
workers takes the form of wages. The scarcer the workers with high human capital,
the higher their wages.

Importantly, many matching markets are dynamic in that they involve repeated in-
teractions over time. Couples divorce and remarry, workers change jobs, and patients
switch doctors — highlighting the dynamic nature of matching processes in real-world
settings. However, much of the traditional literature, such as the celebrated Becker
model of marriage, models matching at a point in time, treating each period as an in-
dependent market and abstracting away from potential intertemporal linkages. This
overlooks an important feature of dynamic environments: while agents’ current types
drive present matches, those matches, in turn, influence the future evolution of types.
For example, a worker’s human capital evolves as a function of their employment
history, implying that past matches shape future opportunities. Workers know this
and account for this future change in their match decision.

In this paper, we develop a model that explicitly incorporates this dynamic feed-
back into matching games with transferable utility. Agents are forward-looking and
have complete information about their potential partners. They internalize how their

current matching decisions affect the future trajectories of their types. The model



results in a novel framework that we call repeated matching games. The solution
concept in this model is a dynamic competitive equilibrium, which can be viewed as
an extension of a Walrasian equilibrium to a dynamic setting with complete informa-
tion. Our approach combines the stable matching problem in the tradition of Becker
(1973) and Shapley and Shubik (1971) with Markov decision processes akin to Rust
(1987). Static, transferable utility matching games have productively formed the ba-
sis for many papers that structurally estimate models of relationship formation (e.g.,
Dagsvik, 2000; Choo and Siow, 2006; Chiappori et al., 2017; Dupuy and Galichon,
2014; Fox et al., 2018; Galichon and Salanié, 2022). Our repeated matching game can
similarly be used in structural work. After assuming that observed matches are the
solution to a matching equilibrium and adding appropriate error terms, the model
enables us to structurally estimate underlying preference parameters using observed
data on matches, generalizing the seminal framework by Choo and Siow (2006).

Our repeated matching game operates in discrete time. Each period, there is a set
of active agents. Each agent has a state variable, which is also the type of an agent in
the language of static matching games. Making a match or remaining unmatched can
affect the evolution of this agent state variable or agent type. Each period, there is a
matching market with prices or transfers for different matches. These prices clear the
market. Given these prices, each agent selects the best partner in a forward-looking
manner. Agents have complete information about the state variables’ distributions
over time. In other words, each agent picks a partner today taking into account both
current structural payoffs and transfers as well as how the relationship choice affects
the agent’s own state variable and hence the profitability of possibly all matches in
future periods. Next period the matching market reopens, new prices are stated and
new matches form. Each period should be thought of as long enough for all agents
to consider exiting a current match and choosing a new partner. Frictions such as
switching costs can be included if desired, for example as one explanation for sticky
matches that last multiple periods.

A repeated matching game has both individual and aggregate dynamics. At the
individual level, each agent is solving a single-agent dynamic programming problem,
where at each period the agent’s action is to choose a partner to match with. At
the aggregate level, the aggregate state variable of the matching market is the ac-
tive agents’ current set of types or state variables. This aggregate state variable

evolves with the decisions of the individual agents. We prove that a decentralized



competitive equilibrium exists, meaning that there exist prices in each period so that
forward-looking workers and firms make profit-maximizing yet feasible matches. We
also prove that the assignment portion of the competitive equilibrium to the decen-
tralized economy satisfies a social planner’s problem, as in static, one-to-one matching
games with transferable utility (Shapley and Shubik, 1971), thereby generalizing an
important characterization of the equilibrium matching in static matching games to
our dynamic setting. Solving the social planner’s dynamic optimization problem ob-
tains the aggregate matching distribution.

Another important theoretical result is that a stationary equilibrium exists: there
is a distribution of individual states such that, after optimal matches are chosen by
forward-looking agents in a decentralized competitive equilibrium, the same distribu-
tion of states occurs next period. The existence of a stationary equilibrium holds for
any admissible parameter vector satisfying the usual finiteness and discounting as-
sumptions and lets the researcher optionally ignore aggregate dynamics by imposing
that the matching game is at a stationary equilibrium.

A repeated matching game can be a useful empirical framework for structural esti-
mation of the production function or match surplus function that is the sum of payoffs
of the workers ans firms for a given match. We introduce a version of the repeated
matching game with econometric errors representing unobserved heterogeneity in the
preferences of agents for partner types. The repeated matching game with econo-
metric errors can best be explained as the combination of two touchstone papers
in the literature. Choo and Siow (2006) proposes an estimator for static matching
games with logit errors. Rust (1987) proposes an estimator for single agent, dynamic
discrete choice models, often using logit errors. In our repeated matching game, an
agent’s discrete choice each period includes whom to match with and faces possibly
logit errors for each type of partner. The agent’s type in the matching game is also
its state variable, as in dynamic discrete choice models. After computing the prices
in a competitive equilibrium, our model of an individual agent’s behavior coincides
with the dynamic discrete choice model in Rust (1987). If we set the discount factors
to zero, a repeated version of Choo and Siow (2006) arises.

For the model with econometric errors, we prove that a decentralized competi-
tive equilibrium with time-varying aggregate states exists and the matching in such
an equilibrium can be computed by a social planner’s dynamic problem. We also

prove that a stationary equilibrium exists, which is important for many empirical



applications in empirical micro that do not focus on aggregate dynamics.

We introduce and benchmark computational methods to compute both an equilib-
rium for the model with time-varying aggregate states as well as to directly compute a
stationary equilibrium. For both the models with and without econometric errors, we
compute the equilibrium matching for the time-varying aggregate state by solving the
social planner’s Bellman equation for the planner’s value function. We approximate
the value function using function approximation techniques, such as deep learning,
inside value function iteration. Our two algorithms for computing a stationary equi-
librium are more novel. One method, MPEC, solves a system of nonlinear equations
using a nonlinear programming solver. The second method uses a primal-dual algo-
rithm by Chambolle and Pock (2011). Our benchmarks show that both these methods
can scale to problems with many agent types, and the primal-dual algorithm scales
better.

Our Supplementary Material discusses structural estimation using data on matches
and agent states from a stationary equilibrium. Both the MPEC and the primal-dual
algorithms can be extended from equilibrium computation to structural estimation by
adding appropriate terms to the mathematical programs to be solved. We also bench-
mark our two estimators and show that a similar conclusion holds: the primal-dual
algorithm scales better with the number of structural parameters.

In an empirical illustration, we use panel data on Swedish engineers who work
at private-sector employers to estimate match production as a function of worker
and firm types. The engineers’ time-varying states are overall experience as well as
recent experience in, separately, technical and managerial jobs. The two job-specific
measures of human capital accumulate when the worker matches to a job of the
relevant type. We estimate the match production function as a function of these
worker experience variables and the type of the job, technical or managerial.

To our knowledge, there is not a useful off-the-shelf model from the theory lit-
erature that generalizes static matching games such as the ones developed in Gale
(1989); Koopmans and Beckmann (1957); Becker (1973); Shapley and Shubik (1971)
to a dynamic setting. Yet such a generalization is useful to study a wide array of
markets. For instance, entrepreneurs might be generalists who require experience in
several roles before launching their own firms (Lazear, 2009). In supplier/assembler
matching, lower-quality car part suppliers participating in Toyota’s Supplier Devel-

opment Program might raise the quality of future parts (Fox, 2018).



We use econometric assumptions from the literature on estimating static match-
ing games with a continuum of agents (Choo and Siow, 2006; Chiappori et al., 2017;
Fox, 2018; Galichon and Salanié, 2022). Our individual agent problems are dynamic
discrete choice models (Miller, 1984; Wolpin, 1984; Pakes, 1986; Rust, 1987). More
recently Rosaia (2021) links undiscounted Markov decision processes to static discrete
choice models. In terms of dynamic matching, Choo (2015) derives closed-form for-
mulas for a model where matched agents are exogenously separated from the pool of
agents who can match. By contrast in our models’ equilibrium, agents endogenously
separate based in part on the availability of attractive partners. Erlinger et al. (2015)
and McCann et al. (2015) use two-period models, where in the first period an agent
goes to school and in the second period the agent participates in the labor market.
Peski (2021) also focuses on the evolution of individual agent state variables, in his
case with a dynamic search model where each period each unmatched agent meets
another and accepts or rejects the match. Separations are exogenous and hence unre-
lated to attractive potential partners, unlike our model. Our model with econometric
errors is perhaps mathematically most closely linked to the model of trade in used
cars by Gillingham et al. (2022). Used cars in their model are not forward looking.
By contrast, both sides of the market are forward looking in our approach. Anderson
and Smith (2010) propose a model of dynamic matching where types are fixed, but
reputations evolve according to Bayesian updating. We adopt a different focus, in
that our model captures agents’ anticipation in a change of their own type.

Our model is a strong departure from the large and influential literature on search
models (e.g., Burdett and Mortensen, 1998), in which frictions arise from imperfect
meeting technologies: agents encounter one another randomly rather than being in-
stantaneously matched at no cost. In particular, Shimer and Smith (2000) and Atakan
(2006) combine matching d la Becker with search frictions. As already mentioned,
a special case of our model includes switching costs by defining the agent states to
include previous matches.

Section 2 presents the baseline model of repeated matching games, theoretically
showing the existence of both an equilibrium with time-varying aggregate states and a
stationary equilibrium. Section 3 describes the model with econometric shocks. Sec-
tion 4 presents our methods for equilibrium computation. Section 5 is our empirical

application to Swedish engineers switching employers. Section 6 concludes.



2 The Baseline Model

2.1 Set Up

Agents match in a one-to-one, two-sided market.! We refer to one side of the market
as workers and to the other side as firms. Let x € X be the state of the worker,
with the set of worker states A being finite. We also call = the type of the worker,
recognizing the type can change over time. Let y € ) be the firm state, with ) also
finite. A worker with state x can match with any y firm, but the worker also has
the option to remain unmatched, which we denote by 0. The choice set of workers is
therefore My = Y U{0} and the choice set of firms is Xy = X U{0}.

Our model is one of large numbers of both workers and firms, which we conjecture
is required for results that rely on real numbers, such as the coming result on the
existence of a stationary equilibrium. Therefore, we assume that there is a continuum
of workers and a continuum of firms.

We consider an infinite-horizon model in which periods are discrete and the match-
ing market takes place every period. Workers and firms discount the future at rate
[ < 1. Note that the horizon is the horizon for the entire economy, rather than the
horizon for an individual worker or firm, which can be finite by placing worker or
firm age in the state variables. The worker and firm states evolve according to known
transition rules that are functions of the current match (z,y). The conditional prob-
ability mass function for the worker’s next state x’ if at current state x and matched

to state y is
Py

and the transition rule for firm state y is

Qy’ |y

Not restricting these transition rules further is a key aspect of generality relative to
some prior work.

In the aggregate economy, we keep track of the masses of workers and firms of each

'We conjecture that the results in this paper could be extended to the fairly general case of
trading networks, where an agent can in generality make multiple trades/matches as both a buyer
and a seller simultaneously, as in Hatfield et al. (2013) and in Section 6 of Azevedo and Hatfield
(2018).



type. Let m! be the mass of workers of type z in period ¢, with m' = (m!),cx being

the vector of masses for all worker states. Likewise, let nty be the mass of firms of

t
Y

which contains the masses of all worker and firm types. Additional macro states, like

type y, with n* = (n!),cy. The aggregate state of the economy in period ¢ is (m’, n'),
demand shifters for the industry being studied, can be added to the aggregate state
with little conceptual difficulty, although we do not pursue that extension. The total
masses of workers and firms M and N remain constant over time, i.e. it must always

be the case that the aggregate state lies in a bounded set L, as in

> my =M, Zny:N} V.

zeEX yey

(m',n') € L = {(m,n) >0

In a proposed outcome to the model in period ¢, let uéy be the the mass of matches
between workers of state z and firms of state y. Likewise !, is the mass of workers of
type 2 who are unmatched and p!, is the mass of vacant firms. Let p* = (“;y)zye XV
be the matrix of masses of matches, where Xy Vo = {(x,y) | x € Xy, y € Vo, (x,y) # (0,0)}.
In our discussion of estimation in the Supplemental Material, we will have data ran-
domly sampled from .

Matched agents exchange monetary transfers in equilibrium. Let wf,:y be the mone-
tary transfer paid by y to x when the two are matched. Agents who remain unmatched
do not receive or pay any transfers. Let w' = (w},).yexy be the vector of (endoge-
nously determined) wages in period ¢, which we also refer to as a wage menu. In
estimation, we will not use data on monetary transfers, as using data on matches and
types only has been the most common data scheme for transferable utility matching
games since the early work of Becker (1973) and early structural empirical work by
Choo and Siow (2006).

An outcome to the model has matches p(m,n) and transfers w(m,n) for all pos-
sible aggregate states (m,n). The aggregate state transitions using the matches and
the individual state transition rules. We use the shorthand notation (Pu, Qu) for the

next period’s aggregate state:

(Pu)e = Z Pajary prory  and - (Qpu)y = Z Qylary Hary'-

' eX,y' € z'eXo,y’ €Y

Aggregate transitions are deterministic, although adding stochasticity at the ag-



gregate level is conceptually straightforward in our framework. At the individual
level, transitions are stochastic according to the rules P and (). Individual workers
may gain or lose human capital in various occupations. At the aggregate level, the
total masses M and N and transition probabilities P and () are exogenously given,
while wages w and matches p are endogenously determined. At the individual level,
the wage schedule w is taken as exogenous and determines the matching choice. We
describe these mechanisms in the next subsection.

In our empirical application to Swedish engineers, we augment the repeated match-
ing model to include the arrival and departure of workers and jobs in each period in

order to match the data.

2.2 Dynamic Competitive Equilibrium

In this section, we start by describing the matching problem solved by individual
agents. We then define our solution concept for the model, which we call a dynamic
competitive equilibrium.
If a worker of state x matches to a firm of state y in period ¢, the worker receives
flow profit
Oy + W,

where o, is a structural parameter measuring the worker’s non-monetary utility and
wiy is the equilibrium wage paid by firm y to worker x. oy, is the same in every
period and it captures amenities perceived by the worker, while w:’;y can change over
time. If the worker is unmatched, he or she does not receive a transfer and we also
assume zero amenities, a,g = 0.

The wages in period t are w' = (w}, ).y, the tuple of wages for all zy pairs. Let
w = (w'); be the wage schedule, the infinite series of wages. The worker is forward
looking and chooses a partner y' in every period ¢ to maximize his or her expected

present discounted value of lifetime profit, or
(e.)
]E Z/Bt (Oél-tyt + wityt) ’QJO =X 5
t=0
where 2! is the worker’s state variable in period ¢t > 1 and %! is the firm partner type

picked that period. Wages (w'); are taken as given by the individual. Because the

individual state transitions are stochastic, future states are random variables. The



expectation is taken over the future sequence of individual states x. In the next
section, we detail how wages are set in every period depending on the aggregate state
(m,n).

The problem can be analyzed recursively using the workers’ Bellman equation:

Ut (w(f)) — max {%y + w;y +8 Z Pz,‘ny;frl (w(m))} : (1)

€No
Y r'eX

where w®) = (w')i>,. The function U} (w") is the continuation value for a worker
with state variable 2 choosing from a menu of wages w. The sum Y, 3 Prjzy Uy (w1)
is the expected continuation value in the next period.
Symmetrically, a firm of type y has flow profit
t
Ty — Wy,
where 7,, is the non-transfer portion of profit accruing directly to the firm, its output.

If the firm is unmatched, it pays no wages and has no output, 7o, = 0. The firm’s

Bellman equation is

VZ (w(t)) = max {’yxy — w;y +p Z Qy/\xyV;,H (w(Hl))} , (2)

reXy Iy
Y

where V;f (w(t)) is the continuation value for a firm with state variable y choosing
from a menu of wages w(®.

Given the series of wages w®, the worker’s and firm’s problems are akin to one-
sided problems. Each worker and each firm is solving a dynamic discrete choice
problem, where the discrete choice is a partner type. In the next section, we specify
how wages adjust to clear the market at the aggregate level and are taken as given by
individual agents. Other discrete choices, like the decision to undertake an explicit
investment to improve a state variable, can be added to the model without changing

its basic mathematical structure.

Example. To illustrate the model, we use the following example later in this section.
Consider two types of workers and two types of firms. The total masses of workers

and firms are 1 each. Worker and firm types are either high, h, or low [. We use the
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vector of amenities:
a = [Oé” Qp Oy Opp O Oého] = [1 2240 O] .

Workers and firms are subject to transition rules P and ). Matching with a given

type in period t gives agents a high probability to transition to this type themselves
in period ¢t + 1. Let
|83 6 2 .9 1
27 4 8109

For simplicity, we set firms’ outputs v and transitions () to be the same as workers’

p_ Py Pyun By Byrne Pjo Pyno
Pou  Puin Punt Pupn Prjo Phjno

amenities and transitions:
vy=caand @ = P.

]

As in the static matching game literature such as Shapley and Shubik (1971),
the solution concept for our model is competitive equilibrium, which we refer to as
dynamic competitive equilibrium.

Matching masses are pu = ('), where p is the tuple ((1h,)ay, (Hho)zs (1h,)y) in &
time period t. We say that matching p is feasible for an aggregate state (m,n) if it

satisfies
E : 0 __ E 0 _
/’l’zy = My and :U’xy - ny (3)
y€Vo xeXp
t _ t+1 t _ t+1
§ : Pf\wly':ua:’y’ - 2 ::u:t:y and § : QyWZ/IUl"y’ - 2 :,ny )
z'eX,y'€do y€Vo z'eXp,y' €Y T€EXy

The first two equations ensure that x° sums to the initial aggregate masses m and

n. The last two impose that p'™! sums to the aggregate masses in ¢t + 1 since

t ot t ot
E Prjary fryryy = my and E Qylary gy = Ty
' eX,y' € z'€Xo,y' €Y

In the following Definition 1, (i, w) is a tuple of matches and wages.

Definition 1. (i, w) is a dynamic competitive equilibrium (DCE) if it is feasible for

all (m,n) € L and for all z € X', § € ), a positive matching mass i}, > 0 in period ¢

11



implies the match between worker z and firm ¢ maximizes both agents’ profits as in
t+1
RSN Y € argmax, .y, OQgy + wmy +8> . vex Pz UL (w(t+1)) n
T Y
] T €argmax,cy, Yoy — wxg + 8 Zy/ey qumgVZ,H (w(t+1))

where U™ and V**! are the agents’ continuation values given w, as defined in (1)

and (2).

In a DCE, each agent is maximizing its expected, present-discounted sum of prof-

its.

2.3 The Social Planner Problem

Solving for the decentralized dynamic competitive equilibrium using Definition 1
presents significant challenges, as it requires computing agents’ continuation values
on the entire space of possible wage menus. Instead of directly computing the de-
centralized equilibrium, we extend a key result from static matching games to our
repeated matching game. We consider a social planner’s problem, show the existence
of a solution, and show that the solution is also the matching portion of a decen-
tralized dynamic competitive equilibrium. Therefore, we prove the equivalent of the
social planner’s property in the static model of Shapley and Shubik (1971) for our
dynamic model. If we set the discount factor 5 to be zero for both workers and firms,
the static social planner result of Shapley and Shubik would apply to each period
separately.

Static matching games with transferable utility often highlight the importance of

the total flow surplus or production of a match:
(I):cy = Oy + Yey-

We will also focus on the match production.
Given an initial aggregate state (m, n), the social planner’s problem is to maximize

the present discounted value of economywide profits W (m,n):

W(m,n) = H}@g{Zﬁt >k, my}

zy€Xo X Vo

12



s.t Z pig, = m, and Z [igy = Ny (5)

y€Vo zEXp
t _§:t+1 2: t _§:t+1
E : Pafary Hory = Moy and Qulaty Hyry = Pay -
z'eX,y'edo y€Xo z'eXoy’' €y TeX

The constraints are the same as the feasibility constraints (3).
The primal problem can be analyzed recursively using the social planner’s Bellman

equation

W(m,n) = max Z fay@ay + BW (P, Qu) ¢, (6)
HEM(m,n) cyexa Vo

where Xy Vo = {z € X,y € W | (z,y) # (0,0)} and M(m,n) is the set of matchings
that satisfy the feasibility constraints

M(mvn) = {(sz)xye)(o Yo >0

Z:ua:y:mxy Z,uxy:ny}~

y€Vo zEX,

The present discounted value of economy-wide profits W : L — R is a function from
the space of aggregate states L = {(m, n) >0 ‘ DwexMa =M, > yn, = N} to R.
The notation W (Pu, Qu) is shorthand for evaluating the next period’s continuation

value by applying the worker and firm transition rules, P and @), to the match masses

in the tuple pu.

2.3.1 Solving the Social Planner Problem

We will show that the recursive formulation lets us prove that a unique present
discounted value for economywide profit for each aggregate state (m,n) exists across
all equilibria.

The social planner problem is a dynamic program with continuous states (m,n)
and continuous controls pu. Therefore, the social planner problem fits into classic

reference works on such single-agent dynamic programs, such as Stokey et al. (1989).

Proposition 1. There is a unique function W : L — R that is solution to equation (6)

and it is continuous, bounded, concave, and defined on the entire set L.

Sketch of proof. The proof is in the Supplemental Material, Section S.1.2. It builds
on similar results in Stokey et al. (1989). O

13



A useful corollary of Proposition 1 is that an optimal matching policy p(m,n)

exists for any aggregate state in L but is not necessarily unique.

Corollary 1. Given the aggregate state (m,n), an optimal matching policy p(m,n)

exists.

Proof. Existence of an optimal policy derives from the theorems cited in the propo-

sition’s proof. |

2.3.2 Using the Social Planner Problem to Solve for the DCE

Solving for the social planner’s optimal policy yields a optimal matching policy. We
now show that this optimal matching policy is also compatible with a decentralized
competitive equilibrium, in two steps. First we derive the dual of the social planner’s
problem, which allows the calculation of optimal monetary transfers. Second, we show
that the optimal matching policy and the optimal monetary transfers obtained in the
social planner’s primal and dual problems are together a decentralized competitive
equilibrium (p, w).

We define the social planner’s cost minimization problem at aggregate state (m,n)

. 0 0
%{me% +Znyvy}
reX yey

subject to

r’'eXxX y'ey
UL > B PupoULt Yt zeX
r'eX

Vy>BY QuuoVyt Vi yey.

y'ey

Proposition 2. The social planner’s cost minimization problem is the dual of the
primal problem and strong duality holds, so that the value of the dual objective at
a solution is the same as the value of the primal problem’s objective at a solution to
that problem, W (m,n).

Sketch of proof. The primal problem is a linear program with a countable number

of controls in the objective function and a countable number of constraints. The

14



paper Romeijn and Smith (1998) provides a formulation of the dual and sufficient
conditions for strong duality in such countable linear programs. The complete proof
is in Appendix A.1.1. O]

Strong duality holding is critical for standard equilibrium properties such as the
coming existence of a competitive equilibrium. Strong duality holds in our model in
part because of time discounting. Strong duality in linear and nonlinear programs
with countably infinite controls and constraints is a non-trivial extension over results
for finite programs and is still an active area of research in mathematics, as many
problems with countably infinite controls that we do not study actually do not satisfy
strong duality. While the references in mathematics that we cite in proofs do not
explicitly state what further properties hold once strong duality is established, the
news is good. For example and just like in the finite controls case, it is simple to
show that strong duality holding implies that the Lagrange multipliers of the primal
problem constraints are the solutions to the dual problem.

Given an aggregate state (m,n), the social planner’s problem admits at least an
optimal policy p*(m, n) and its associated Lagrange multipliers (U*(m,n), V*(m,n)).
The next period’s aggregate state is (m/,n’) = (Pu*(m,n), Qu*(m,n)), for which
there is once again an optimal policy p*(m’, n’) and Lagrange multipliers (U*(m/,n"), V*(m/, n’)).
Applying the optimal policy successively, starting from (m° n°) = (m,n) and such
that (m'* ntt) = (Pu*(mt, nt), Qu*(mt,nt)), yields an infinite series of optimal
matchings (u'); and Lagrange multipliers (U’, V?),. These are the solutions to the
infinite horizon formulations of the social planners’ primal and dual. In Theorem 1,

we show how to use these series to obtain a dynamic competitive equilibrium (DCE).

Theorem 1. Let (u'); and (U', V") be the series of optimal matchings and Lagrange
multipliers that solve the social planner problem for the series of aggregate states

(m*,n');. Define transfers w = (w'), that satisfy

_V;j + Vay + /B Z Qy’|xy‘/Z/+1 < wiy

y' ey

(7)
<UL —0my— B> PuoUitt VeeX,yed

r'eX

Then the tuple (pu,w) is a dynamic competitive equilibrium. Conversely, let (p,w) be

a DCE and let (U*, V'), be the associated continuation values as given in definition 1.

15



Then (u'), and (U, V"), solve the social planner problem.

The proof of Theorem 1 is in appendix A.1.2. Note that if ,ufcy > 0, then the
upper bound of wiy coincides with the lower bound, so in this case, the value of w is
unambiguously defined.

The social planner’s optimal matching policy p given aggregate state (m,n) is
therefore part of a dynamic competitive equilibrium at time ¢ when the aggregate
state is (m',n') = (m,n). Note that the social planner problem gives us a practical
way of finding a dynamic competitive equilibrium. Once we have solved for W by
value function iteration, we need only solve the primal for a given aggregate state to
obtain a matching policy that is part of a dynamic competitive equilibrium. We refer
to such a policy as p(m,n).

The dynamic competitive equilibrium on the space of aggregate states L depends
only on the model parameters: M, N, «, v, P, QQ and 5. Typically, the aggregate
state (m,n) varies from period to period. The time series (m’, n'); is deterministic
given a starting value (m° n°) for the aggregate state, with the transition rule de-
termined by the optimal matching policy: (m‘*, n't1) = (Pu(m', n'), Qu(m!, n')).
In the next section, we show that there exists a constant aggregate state such that

(mt*1, nt1) = (mt, nt).

Example. Let us return to our earlier example. Choose 5 = 0.95. Given the values
of B, a, v, P and @ that we described previously, we can solve for the social planner’s
function W (see Section 4 for more details on how we solve for W numerically). Once
we have computed W, we can compute the dynamic competitive equilibrium for all
aggregate states (m,n) € L.

To illustrate, let us choose three different aggregate states at time ¢t = 0:
(m',n') = (.05,.95,.05,.95) (m? n?) = (.95,.05,.95,.05) (m?* n*)=(5,.5,.5,.5).

For each of (m!,n'), (m? n?) and (m3, n3) we can solve for the optimal matching
policy and wage: (u', w'), (4%, w?) and (u3, w3). Given these, we obtain three different
next-period aggregate states, for which we can again solve for the optimal policy, and
so forth for future periods. The left pane of Figure 1 plots the evolution of the
aggregate state of low-type workers [ over 15 periods in the model, starting from each

of the three aggregate states m;, m?, and m?. All three time series converge to the
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same constant aggregate state (.46,.54). We discuss constant aggregate states in the
next subsection.

At the aggregate level, the aggregate state is a deterministic time series, as shown
in the left pane of Figure 1. However, at the individual level, the state variable that
the agent reaches next period is stochastic, because of the transition rules P and
Q. Consider an initially low-type worker in a world where (m3,n?) is the starting
aggregate state. The right pane of Figure 1 illustrates three paths the worker can
take over time. Many more paths are possible, because the next period’s state for

each worker is random, as it depends on the current match and the transition rules.

1.0

mit

mi* h — —

0.8 [

0.6

Mass
Worker type

0.2

0.0 . . / ! ] | . . . . . . .
2 4 3 8 10 12 14 5 10 15 20 25 30
Time Time

Figure 1: Workers’ Aggregate State Evolution (left) and Individual Worker’s Possible
State Variable Paths (right)

2.4 Constant Aggregate State

An aggregate state is constant if it remains the same next period. The matching

policy associated to this aggregate state is then stationary.

Definition 2. A constant aggregate state is an aggregate state (m,n) such that

there exists a matching p solution to (6) given (m,n) that satisfies the stationarity

= = Y

conditions
Px‘wxy/ux/y/ Vee X

y€YVo

ny:zluxy:

xEX

xleryleyO

Z Qy\x’y/,ux’y’ V’y 6 y .

x’GXo,y/Gy
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The constant aggregate state in Definition 2 is such that there is a matching that
solves the social planner problem that results in the same aggregate state next period.
We refer to the matching policy and wages schedule (p,w) at a constant aggregate
state (m,n) as a stationary equilibrium. Note that the dynamic competitive equilib-
rium is defined at every aggregate state (m,n) € L while the stationary equilibrium
is only defined at a constant aggregate state.

We show the existence of a constant aggregate state in Theorem 2.2
Theorem 2. A constant aggregate state exists.

Sketch of proof. We rely on Proposition 1 to show that the set-valued function that
yields the next-period aggregate states (m’,n’) given (m,n) satisfies the conditions
of Kakutani’s theorem and as such admits a fixed point. The complete proof is in
Appendix A.1.3. O]

Note that it is straightforward to have individual workers and firms with finite
horizons, even when the economy has a finite horizon: one can adapt the transition
rules to include absorbing states that effectively end the game for workers or firms.
However, introducing a finite horizon to the entire economy changes how one solves
the primal problem: It can be solved by backward induction. It is unlikely that there

is a constant aggregate state in the finite-horizon problem.

3 Model with Econometric Errors

In the previous section, we defined a dynamic competitive equilibrium in our model
and showed that such a equilibrium could be computed by solving a social planner
problem. Finally we demonstrated that a constant aggregate state existed. In this

section, we introduce econometric shocks to our model and show that the same results
hold.

3.1 Specification

The previous model often predicts that some matches never occur, meaning p,, = 0

for some types x and y. This contradicts available datasets where, with enough

2In some cases a constant aggregate state will put all mass at the boundary of the state space.
For example, if workers are infinitely lived and accumulate experience deterministically and mono-
tonically, the constant aggregate state will involve all workers having the upper bound on experience.
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observations, it is the case that p, is rarely or never zero. This contradiction is
solved by including random utility terms in the flow profits of both workers and
firms. These random utility terms matter for match formation but are unobserved to
the econometrician. They can also be called econometric errors, preference shocks,
preference heterogeneity, or unobserved state variables.

Let the per period flow profit for worker ¢ of type x matched with a type y firm
be

Ugy + €iy = Qgy + Wy + €iys

where €, is worker ¢’s preference shock for type y partners. Worker ¢ is indifferent
between all partners of the same observed type y. The flow profit from being un-
matched is o + €;0. Let the flow profit for a firm j of type y matched with a worker
of type x be

Uy + Nej = Yoy — Way + Mgy

where 7,; is firm j’s preference for workers of type x. The flow profit to a firm for
being unmatched is v, + 1jo.

When we turn to estimation in a later section, the econometrician only knows the
distribution of the econometric errors, but not their realizations. We make similar
assumptions to Choo and Siow (2006) for static matching games and Rust (1987) for

single-agent dynamic discrete choice models.
Assumption 1. The econometric errors satisfy the following assumptions:

1. The distribution of the random vector (e;,) where ¢ is randomly drawn

yeW’
within workers of type w, is L, in every period t. The distribution of the
random vector (7;:),cy, given individual firm j drawn within firms of type y
is Ly, in every period ¢. The vectors (€iy),y, and (7jz),cy, have finite first

moments for all y and x.

2. For a single worker 7 in the two time periods ¢ and ¢+ 1 with measured states x!

and :Cﬁ“, the distribution of (623 1)y€3’
0
t+1

iy )yeyo xﬁ,xf""l, (Egy)y@h) = £ <(€§;—1)y€yo ’x?l)'

A similar conditional independence assumption holds for firms.

satisfies the following conditional inde-

pendence property: L ((e

Under our model with a large number of agents, agents have no market power

and therefore it is irrelevant whether these econometric errors are public or private
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information to the market participants. Also, Part 2 of the assumption states that
preferences are drawn anew each time period conditional on measured states x or
y, rather than being possibly correlated over time. Considering identification and
estimation with unmeasured states that are persistent over time is left to future
work.

To ensure the existence of economy-wide profits in the setting with econometric

shocks, we also make the following assumption.

Assumption 2. Vo € X,y € ), the distributions L, and L,, have full support and

are absolutely continuous with respect to the Lebesgue measure.

Unmeasured preferences in the literature on estimating static matching games
with a small number of matching markets, each with a continuum of agents, are
typically preferences over measured partner types x or y rather than unmeasured
preferences attributes (Choo and Siow, 2006; Dupuy and Galichon, 2014; Chiappori
et al., 2017; Fox, 2018; Galichon and Salanié, 2022). This contrasts with a data scheme
of many smaller markets, where agents could have preferences over unmeasured (in
data) attributes of partners (Fox et al., 2018).

To ensure that no masses in the constant aggregate state are 0, we also require that
all state variables are visited from one period to the next. This assumption ensures
the social planner problem with econometric shocks is well defined (see Lemma 3
below).

Assumption 3. For all x € X there exists (x,y) such that Py, > 0. For all y € J
there exists (z,y) such that Qyz, > 0.

3.2 The Dynamic Competitive Equilibrium with Preference
Shocks

3.2.1 General Econometric Shocks

In the model with econometric preference shocks, the worker and firm Bellman equa-

tions are changed to make the preference shock realization part of the current period’s
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state variable for each agent:

U; (w",€) = max {amy +wl, + € + 8 26; PronE [US (w0, 1)) }

, (8)
Vi (. o) = max {%y o 5 Qe [V () }

rE€Xy Iy
Yy

where €, and 7, are the realized econometric shocks, and the expected values in ULt
and V;f“ are taken with respect to the distributions of next period’s econometric
shocks €1 and n'*!.

With the worker and firm value functions, we can adapt the notion of a dynamic
competitive equilibrium (DCE) from Section A.1 to the model with unobserved het-
erogeneity. It is computationally attractive to work with aggregates over the real-
izations of the unobserved heterogeneity terms €, and 7,. A dynamic competitive
equilibrium (DCE) is defined as follows.

Definition 3. In the framework with econometric errors, the tuple (u, w) is a dynamic
competitive equilibrium (DCE) if u' corresponds to the probability that each 7 is

optimal for each y and conversely, given the wage schedule w. That is

L -
Zyg;z”ti-y = Pr(j € argmaxcy, azy +wf, + €,
+ Zx’EX Pz’liyE [U;fl (w(t+1)7 6t+1)]) (9)
#Zﬂiy =Pr (:1? € argmax ¢ y, Vaj — wig + 77;

B ey Quped® [ViH (w0, 741)] )

1

where the expected values are taken over future draws of preference shocks /™! and

t+1
n .

As in the case with no econometric shocks, we will use the social planner’s problem
to compute a DCE. In the case with econometric shocks the social planner problem
is said to be regularized, meaning that the objective function contains an additional
term that accounts for the econometric shocks. A key role is played by the so-called
general entropy function that quantifies the effect of the econometric shocks. The

generalized entropy is defined in the following steps. First, introduce the expected

21



indirect payoff functions G, and H, given the distributions for the econometric shocks:

YyEY TEX,

G.(u) =E {max {Ugy + ey}} and H,(v) =E [max {04y + nx}} ,

where Assumption 2 ensure the max is well defined. Their population counterparts

G and H are

me +(u) and H(v,n) Zny

TeX yey

The total expected indirect payoffs let us express the generalized entropy as:

L5 () B R ()

TEX yEYy yeY r€X)

where fi;. = (Hay) ey, Ky = (Hay)pen,, and G* and H* are the Fenchel-Legendre
transforms of G and H (Galichon and Salanié, 2022). Our initial requirement that
all state variables are visited from one period to the next ensures that Zyeyo py, >0
and Y . pih, > 0, so that £ is defined at every time period ¢. Introduce M as the
set of ;1 > 0 such that p such that Zzyexoy:“xy = M and nyexyo fay = N. The
set M is a closed set, whose interior is the set of vectors p such that 1, > 0 for all
xy € (X x Y)U (X x Yp). The transforms G* and H* are not defined outside of
the interior of M. When some of the p,, = 0, the following lemma shows that the

generalized entropy is bounded on the interior of M.
Lemma 3. The function £ is defined, continuous, and bounded on the interior of M.

The proof is in the Supplemental Material, Section S.2.1, and rests on Assumptions
1, 2 and 3. As a result, the function £ can be extended by continuity to the entire
set M, and in the sequel we will denote by the same notation £ that extension.

Consider a social planner starting at the aggregate state (m,n). The generalized
entropy function £ as defined us allows to write down the social planner’s primal prob-
lem with econometric errors as the maximization of the expected, present-discounted

sum of economywide production under the chosen matching policy, minus the gener-
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alized entropy penalty function &:

max {Z Ck ( o ophy Py & (/f)> } : (10)
Hey =2 =0 z,yE€XoVo
subject to the same feasibility constraints and transition rules as in the model without

Z ugy =m, and Z ugy =Ny, (11)

y€Vo rEXp

preference shocks,

Z lez’y’ﬂi’y’ = Z Mtx;;l and Z Qy\x’y//i;/y/ — Z Mgl- (12)

z'eX,y’ €o y€Jo z'€Xp,y' €Y r€X0

The regularized social planner’s Bellman equation is

eM(m,n
a (m.n) xy€Xo Vo

W(m,n) = max { ) uw@w—au)www,@m}. (13)

The solution W (m,n) is unique.

Proposition 3. There exists a unique function W : L — R that satisfies (13). It is

defined on the entire set L, continuous, bounded and strictly concave.

The proof, which is included in the Supplemental Material, Section S.2.2 for com-

pleteness, uses the same reasoning as for Proposition 1.

Corollary 2. The optimal matching policy p that solves the social planner problem

(13) exists and is unique.

Proof. The function u — >° . y Hay®@ay — E(1) + BW (Pp, Qpu) is continuous and
strictly concave. We are maximizing on the compact set M(m,n). Therefore, there

exists a unique maximum to the regularized social planner problem. O]

It is precisely the nonlinear entropy term &(u) that makes the social planner’s
problem strictly concave, ensuring that the social planner’s problem has a unique
solution.

The social planner’s problem is a nonlinear program with countably infinite con-

trols and constraints. Mathematical knowledge about this class of problems has
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recently been growing. We are able to use the recent literature to establish that
strong duality holds for the relationship between the social planner’s primal problem
and an appropriate dual. The dual that we will derive in the proof of the following

proposition is

1nf ZmOG’ +ZnOH

Y rex yey
stub, +vl, = Oy + B (PTG™) + QTHE™)) (14)
uby = oo + B (PTG
vhy = oy + B (QTH (™)),
where G(u'™) and H(v*!) are the stacked vectors of (G, (u'1)), and (H,(v'™)),.

Proposition 4. The social planner’s primal problem (10) is dual to problem (S.2).
Both problems have optimal solutions and strong duality holds, i.e. their value coin-

cide.

The proof is in the Supplemental Material, Section S.2.3, and is the lengthiest in
this paper. The key paper Luc and Volle (2021) that the proof uses actually shows a
weak notion of strong duality and some effort in the proof is spent building on that
work to show a stronger notion of strong duality. Establishing strong duality means
that many of the key results from nonlinear programs with a finite number of controls
and constraints immediately extend to our nonlinear programs with countably infinite
numbers of controls and constraints.

As in the model without econometric errors, solving the social planner problem
with entropy is the same as solving for the matching that is part of a decentralized

dynamic competitive equilibrium.

Theorem 4. Let (u'); and (u',v'); be the series of optimal match masses and La-
grange multipliers that solve the social planner problem for the series of aggregate
states (m',n');. Define transfers w = (w'), that satisfy

Ty Ty

= —ty, + %y + 8 (QH, (")),

wty = ut, = a, — 8 (PTGa(u™)) (15)

.
Then the tuple (pu,w) is a dynamic competitive equilibrium, DCE. Conversely, let
(u, w) be a DCE and let (U, V'), be the associated continuation values. Then (u')
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and (U*, V'), solve the social planner problems.

The proof is in the Supplemental Material, Section S.2.4. The proof rests on the

use of the strong duality shown in Proposition 4.

3.2.2 The Logit Case

In order to express the competitive matching policy in closed form, we now assume a
particular, well-known distribution for the econometric errors, following the literature,
and in particular Choo and Siow (2006) and Rust (1987).

Assumption 4. The econometric errors € and 7 have the type one extreme value
(also called the Gumbel) distribution.

Under Assumption 4, the indirect payoffs have the logit form (see Galichon and
Salanié (2022) for derivations):

= log Z exp(ugy) and Hy(v) = log Z exp(Vay)-

TISA% reXp

Also, the entropy £ penalty term under logit errors is

= Y paylog="T— 4 > gy log 21—

zYy€X Vo ZyEYO Mmy zY€Y Xo eré‘(o Mmy

Given the logit set up, we can compute certain equations that hold in equilibrium.
These are not solutions to the social planner’s Bellman equation (13), but more a
reformulation of Bellman’s equation given the logit errors, as the terms depend on
the expected, present-discounted profits U, and V,, which are themselves equilibrium

objects.

Proposition 5. Under Assumption 4, the dynamic competitive equilibrium matching

p' in any given period t where the aggregate state is (m!, n') satisfies for all x € X
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and y € Y

o t
sz - m:pn

texp (q)xy e Zx'e" Ué#lpﬁb’\wy + 5 Zy’ey VJ’HQ@/’\W - U; — VJ)
Y 2

phy = ml exp <5 Z U;TIPMIO — U;)

z’'ex

i = e (335 0, - 1

y' ey
where U', V* are the Lagrange multipliers on constraints (11), (12).

Proof. The equilibrium matches arise from calculating the first order conditions of
the social planner’s primal problem (10). The calculations are omitted for space

reasons. OJ

We use Proposition 5 in our empirical application in Section 5 where we assume

a logit set up when econometric shocks are present.

3.3 The Constant Aggregate State with Econometric Errors

We define a constant aggregate state and a stationary equilibrium as in the setting
without econometric shocks (Definition 2). We can also show that a constant aggre-
gate state exists in the setting with shocks. The proof uses a different fixed point

theorem than the corresponding proof for the model without econometric errors.

Theorem 5. A constant aggregate state exists in the model with general econometric

Errors.

Sketch of proof. We rely on Brouwer’s fixed point theorem. The complete proof is in
Appendix A.2.1. O]

4 Methods for Equilibrium Computation

This section develops methods for computing dynamic competitive equilibria, mean-
ing equilibria with aggregate dynamics, and stationary equilibria, meaning equilibria
with a constant aggregate state. We develop algorithms for both the models without

and with econometric shocks.
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In the non-stationary environment, we are solving a single-agent dynamic pro-
gramming problem for the social planner and rely on value function iteration, making
use of the social planner Bellman equations (6) and (13), as detailed in Section 4.1.

Computing a stationary equilibrium is less computationally intensive since we
only need to compute an optimal matching policy for the constant aggregate state,
which we solve for. In the Supplemental Material, Section S.3.1, we show that the
constant aggregate state without econometric errors can be computed using quadratic
optimization. Section 4.1 focuses on the aggregate dynamics with econometric errors,
and Section 4.2 leverages two strategies to solve for the constant aggregate state with
econometric errors. The first strategy uses the Mathematical Programming with
Equilibrium Constraint (MPEC) formulation of our problem (Su and Judd, 2012).
The second strategy reformulates the stationary equilibrium equations as a min-max
problem and solves it using techniques from convex optimization (Chambolle and
Pock, 2011).

Both algorithms for computing a stationary equilibrium for the model with econo-
metric errors are easy to adapt to estimating the model’s structural parameters using
data on matches from a stationary equilibrium. We discuss structural estimation in

the Supplemental Material, Section S.4.

4.1 Aggregate Dynamics

The social planner’s Bellman equations with and without econometric errors (6) and
(13) are Bellman equations from a single-agent dynamic programming problem. Such
problems are most classically solved using value function iteration, exploiting the
property that the right side of the Bellman equation is a contraction. In what fol-
lows, we explore value function iteration in the model with econometric errors, but
most details around using value function iteration also apply to the model without
econometric errors.

The state for the social planner’s problem is (m,n), the vector of the masses of
each worker type and each firm type. Dynamic programming methods of all sorts
suffer from a curse of dimensionality in the number of continuous state variables,
which for the non-stationary case is equal to the number of worker plus the number
of firm types.

Value function iteration operates on a grid ((mgy, ny)) ¢y of nodes, where each

ge{1,...,
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node is an aggregate state and G is the chosen number of points in the grid. The

k + 1 iteration of value function iteration is
Wit (myg,ng) = TWk(mm ng)

where TW(m,n) = max,ecm(m,n) {nye% Vo Payblay + BW (P, Qu) — E(M)} in the
model with econometric errors.

Because the map 7T is a contraction, (Wk) eventually converges to the fixed point

k
of the social planner’s Bellman equation (13). Once the social planner’s W is known,
the matches p (mgy, ny) can be computed as the optimal policy of the social planner
given W at every node g. Note that because (Pu,Qu) does not necessarily land

on a point of the grid ((m,,n , some interpolation technique is needed to
g g1 Tg LGY

e{1,..
compute the value of W (P, Q/L; a{ut this point. Both polynomials and deep nets can
be used as approximation schemes.

Each iteration of value function iteration has a computational cost that is propor-
tional to the size G of the grid ((mg,ng)),cq;

across nodes. Additionally, for each node (mgy,n,) and at each iteration, the contin-

b We can parallelize each iteration

uous optimization problem over match masses ji,, must be calculated. We use the
NLOPT solver, which can be called from a wide array of programming languages,
and find that the maximization on each point of the grid is solved quickly.?

The numerical analysis literature provides a wide array of methods to accelerate
fixed-point iterations (Fang and Saad, 2009; Walker and Ni, 2011). Our implemen-
tation uses the Anderson acceleration method. Its main idea is to use not only W¥*
to update to W**! but also the values from the previous iterations W*=1, Wk=2 .
up to some threshold decided by the analyst. With an aggregate state of dimension

2 x 2, we run a value function iteration on the [.01,1]* x [.01,1]* grid in 32 minutes.

3The algorithm we call through NLOPT is the sequential least-square quadratic programming
algorithm (Johnson (2007), Kraft (1994)).
4Ran in Julia on 4 threads, on a M2 chip Macbook Pro.
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4.2 Constant Aggregate State

We assume a logit set up, so that the optimal policy u has a closed-form solution, as

described in Proposition 5. Let

w(U, VUV \m,n) = (U, V, UV ;m,n),
M:EO(U7 V7 U/V/7 m, n)7 MOy(U7 V7 UIV/7 m, n))

z,yeX Y

be the function that returns the closed form expressions in Proposition 5, where the
first two arguments are the current period payoffs, and the next two are the next
period payoffs.” We present two numerical methods to compute a constant aggregate

state and its associated stationary equilibrium in the model with econometric errors.

4.2.1 Mathematical Programming with Equilibrium Constraints

Mathematical Programming with Equilibrium Constraints, or MPEC, has been used
by Su and Judd (2012) to estimate the single-agent dynamic discrete choice model of
Rust (1987) and by Dubé et al. (2012) to estimate the aggregate demand model of
Berry et al. (1995). MPEC formulates the model as a set of constraints and solves
the set using nonlinear programming.

Instead of solving for optimal matching policy p at each iteration on W, as is
done in value function iteration, MPEC focuses on the control variables (m,n,U, V)
in the search for a constant aggregate state. The primitives (m,n,U, V) have to
satisfy a number of constraints: the feasibility conditions and stationary transition

rules outlined previously.® The constraints are:

Zyeyo tay (U, V.U, V,myn) = m, Vo € X
S, Hay (U V.U, Vom,n) = n, Yy € Y
ZmyeXo)i Porlaoytizy (U, V.U, V,m,n) = my Vo' € X
> eyex o Qulaytey (U, V.U, Vim,n) = ny, Vy' € Y.

Feasibility {
(16)
Stationary Transitions {

To solve the system of equations (16), we use a nonlinear solver to maximize a

®These correspond to (U, V*) and (Ut V#+1) in Proposition 5, respectively.

6The optimal matching policy should also sum to the total masses on each side of the market:
ZmyGXyg Hay (U, V,m,n) = M and nyexoy,umy(U,V,mm) = N. Because the logit formulas are
homogenous of degree 1/2 in (m,n), these two conditions are straightforward to satisfy by adding a
constant to U and V.
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constant function (say 0) subject to the constraints (16). The problem definition
language JuMP in Julia along with the solvers IPOPT and KNITRO are well-suited
to the task.”

4.2.2 Primal-Dual Method

Our second method relies on the same observation as the first: that the constant ag-
gregate state relies on a set (U, V, m, n) that satisfies the feasibility conditions and the
stationary transition rules.® The primal-dual approach can be explained in two steps.
First we show that when § = 1, the three sets of conditions mentioned before are
the first order conditions to a min-max optimization problem. Such an optimization
problem can be solved using a primal-dual algorithm (Chambolle and Pock, 2011).
Second, we modify the algorithm to accommodate that agents do discount the future,
or that 5 < 1. In practise, the algorithm converges to a solution to (16). To vary
between our two steps, we augment the set of parameters of u by the discount factor

[, and consider the following function Z:

Z (Uu ‘/7 Ula V,7 m,n, B) = Z wzy:uaxy<U7 V7 U/7 Vla m7n7ﬁ)_ Zmax - Znya

zy€Xo Vo reX yey

where wyy =2forz € X,y € Y, wyo =1 for x € X and wy, =1 fory € Y.

The min-max problem we solve for § =1 is the following:

r(rjli‘}lmaXZ(U, V,U,V,m,n,1). (17)
Z is concave in (m,n) and convex in (U,V'). Taking first order conditions for the
max in (17) yields the feasibility conditions, and doing the same to the min obtains
the stationary transition rules. Problem (17) can be solved numerically using the
primal-dual algorithm. For the max-min problem (17), the algorithm takes starting

values (U%, V0 m® n%) and (m',n') = (m° n®). Given a small increment 7 and a

"Both solvers use interior point methods.
8Total mass normalization can be enforced with the primal-dual method too.
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threshold 9, it iterates on k > 1 according to the following:

7y
Uerl :Uk—T(aUka—l—/BilaU/Zk) Ve e X
> : (18)

= ‘/yk - T (8Vka + B‘lavéZ’“) Yyey
mitt =mb + 70, 2" VreXx

m,n) update N
(m,n) { it =nf + 79, 2" Yy ey

where
Zk = Z(U*, VF U* VE mk ik )
Zk+1 — Z(UkJrl, VkJrl’ U'kJrl7 VkH,mk, nk,ﬁ)

The stopping criteria is

max (|Uk+1 o Ukl ’ Vk+1 o Vk; mk+1 -m

‘I

, , nk+1—n’“|) < 0.

The main feature of the primal-dual algorithm is that it uses (7m*,7¥), an aver-
age of (m*,n*) and (m*F=1,n¥1), to compute the next (U*!, VF*1). This ensures
stability in the algorithm. Chambolle and Pock (2011) show that the algorithm con-
verges when § = 1, meaning when the feasibility and stability conditions are the first
order conditions to optimization problem (17). In practise, we have found that the

algorithm converges to (U, V, m,n) that solve the three sets of conditions even when

b < 1.

4.2.3 Methods Comparison

Table 1 describes equilibrium computation performance measures for both MPEC and
the primal-dual algorithm, depending on the size of X and ), meaning depending on
the number of types on both sides of the market.

The MPEC method is faster than the primal-dual method on an equilibrium
computation for a small number of types (X x ¥ =2 x 2 and X x ) = 10 x 10), but
is slower with a large number of types (X x Y = 30 x 30 and X x ) = 100 x 100). An
iteration in the primal-dual method is a step in algorithm (18), while an iteration in
MPEC is a step in the gradient descent algorithm used by the solver. An iteration in

MPEC involves the evaluation of the constraints in (16) as well as the computation of
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their gradient. The primal-dual algorithm requires many more iterations than MPEC,

but each iteration takes up less time.

Table 1: MPEC and Primal-Dual Performance - Equilibrium Computation

HX XH#Y 2 x 2 10 x 10 30 x 30 100 x 100
MPEC
Min iterations 3 5 6 8
Max iterations 4 6 7 8
Mean time elapsed .0025 .0210 1.342 87.29
Primal-Dual

Min iterations 5979 2271 2309 5701
Max iterations 9266 2420 2710 6940
Mean time elapsed .0242 .0510 7685 60.93

Notes: Code run in Julia on a Macbook Pro with an M2 chip, 16GB of RAM, and 8 cores. The
nonlinear solver for MPEC is KNITRO. Statistics computed on 10 replications. The convergence
tolerances are set to 10e-6.

A similar comparison is performed for both MPEC and the primal-dual method

adapted to structural estimation in the Supplemental Material, Section S.4.

5 Empirical Application

To illustrate the usefulness of our model applied to labor data, we estimate returns
to occupation-specific experience for elite Swedish engineers, those with five-year en-
gineering degrees, in the 1970s and 1980s. Depending on which occupation they are
employed in, workers can accumulate different types of human capital. Engineers
in particular can hold both technical and managerial human capital. A engineer’s
productivity in a given occupation depends on the type of human capital acquired
and also on his or her total experience in the labor market, meaning across all types
of jobs. We estimate our model on Swedish administrative data to measure the re-
spective contributions of occupation-specific human capital and total labor market
experience to employer-employee match formation.

We use data on observed matchings between Swedish engineers and firms from
1970 to 1990 from the Swedish Employer’s Federation (SAF). The dataset is a yearly

panel that follows engineers through time and allows us to reconstruct their past
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experiences from 1970 onward. We refer the reader to Fox (2009, 2010a) for more
background on the data, and see Section S.5 in the Supplemental Matirial for details
on the data cleaning. We parameterize the match surplus as a function of the engi-
neer’s years of experience in each occupation and his or her age (to proxy for total
labor market experience). We structurally estimate the surplus function parameters
with the MPEC method and maximum likelihood.

There are some necessary differences in this application from the setup in the
previous sections. Our administrative data on employed engineers do not contain
vacant jobs or unemployed workers, so our model in this section does not allow for
these possibilities. Also, we augment the model to allow workers and jobs to enter

and leave the labor market, in order to match the data.

5.1 Model Parameterization

To parameterize the model, we first define workers’ and jobs’ state variables, or types.

A job here is characterized solely by its occupation, general G or technical T":
y = 1 if the job is general, 0 otherwise.

A worker’s state variable is three-dimensional: potential experience x, measured
as the difference between the worker’s age and 26, technical experience x; measured as
the number of years employed in a technical occupation in the past 5 years, and general
experience x4, measured as the number of years employed in a general occupation in

the past 5 years:
r = (T, 4, x4) where z. € {0,...,38}, z, € {0,...,5}, =, € {0,...,5}.

We restrict occupation-specific experience to five years because it allows us to
use match data from 1975 on, as we cannot measure occupation-specific experience
before the start of the panel in 1970. Note that if a worker has been employed in
both technical and general jobs in the past five years, he or she holds both technical
and general experience: z; > 0 and x4, > 0.

Given workers” and jobs’ state variables, we parameterize match surplus or pro-
duction as:

®yy(a,b) = a(@ —y)* + brey, (19)
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Tt
Tt+Tg

five years. The share 7 is a measure of specialization into the technical occupation.

where T = is the share of years employed in a technical occupation in the past
We rescale x, to be between 0 and 1, instead of 0 and 38, so that both Z and x. are
between 0 and 1. Also, recall that y € {0,1}.

If the coefficients a and b are both positive, match production is higher when
a worker with a general or managerial job has lots of managerial experience and
total labor market experience. Fox (2010b) discusses the nonparametric identification
of static matching games; parameters like the ratio 2a/b are identified in a static
matching game without data on unemployed workers and vacant jobs and without
relying on the parametric assumption of type 1 extreme value (logit) errors. The
ratio 2a/b is related to the importance of occupation-specific human capital versus
the importance of total labor market experience.” Leaving the ratio 2a/b aside, the
values a and b convert the production from matches between types x and y to standard
logit units, as in Choo and Siow (2006) and much followup work, such as Chiappori
et al. (2017).

5.2 Estimation

To estimate A = (a,b), we assume logit errors, a discount factor of § = 0.95 for our
annual data, and build on the MPEC strategy exposed in Section S.4 of the Sup-
plemental Material, with two alterations. The first alteration adapts the strategy to
the absence of unemployed workers and vacancies in the our administrative dataset.'®
The second alteration accounts for an incoming or outgoing flow of workers to and
from the labor market every year, which are added to the stationary transition con-

ditions in equations (16). The flows are introduced to account for workers entering

9To gain intuition, consider a static labor market without logit shocks with one managerial job
y = 1, one technical job y = 0, and two workers with types (z'!,2}) and (Z?,22) respectively. Using
the social planner result in Shapley and Shubik (1971), algebra shows that worker 1 will match to
the managerial job when
rl —22  2a

—— > .
7l — 72 b

10Sweden had an incredibly low, by modern standards, unemployment rate during 1970-1990
and elite Swedish engineers were even less likely to be unemployed than typical workers. One may
presume that there were unfilled vacancies, although our empirical model does not allow for unfilled
vacancies due to a lack of data on them.
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and exiting the labor market. They are imposed during estimation, such that

ZPx|xyuxy(UVn m) + i, = ZMW U, V,n,m)

z'y Y

ZQy‘xyuxy(UVn m) + i, = Z“W (U,V,n,m),

!
‘rvy

where 7, and 4, are net changes in the number of jobs and workers of a given type
from year to year.
The observed stationary matching /i is the ratio of the number of observed matches

(x,y) over the total number of matches between 1975 and 1990:

1990 t
t=1975 N

Py = <7900 Nt
t=1975 T,yeX Y

where N;f,y is the number of observed (z,y) matches in year t. We choose the
{1975, ...,1990} interval because we use the five years between 1970 and 1974 to

measure workers’ past occupational experience. By construction, fi sums to 1:

Z flay = 1

z,yeX Y

Therefore we also impose that p(\, U, V,m,n) also sums to 1.

The workers’ transition matrix P is deterministic: z; (resp. x,) is increased by
1 if the worker was employed in a technical occupation in the previous year, with a
cap at 5. Workers all gain one year of potential experience every year. Given our
characterization of jobs, they do not change types: transition matrix () has entries

Qyley = 1if ¥ =y, and 0 otherwise.

5.3 Results

Table 2 describes observed matching between job types (occupations) and worker
types (potential experience and specialization). Workers employed in technical occu-
pations tend to have less total labor market experienced (11.6 years versus 13.5 years)
and are a bit more specialized in terms of recent job-specific experience (84.3% of re-
cent experience in technical jobs versus for those currently in technical jobs versus

100% — 16.6% = 83.4% in general job experience for those currently in general jobs).
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Table 2: Matching Statistics

In General Job  In Technical Job

Years potential labor market experience 13.5 11.6
% technical experience in last 5 years 16.6 84.3

Authors’ calculations from SAF data. See Supplemental Material Section S.5 for details on the data
construction.

Table 3: Point Estimates and Standard Errors

a b 2?“
Point Estimate 1.83 0.75 4.87
Standard Error (.001) (.004) (.342)

Authors’ estimation from SAF data. Bootstrap standard errors computed with 50 bootstrap repli-
cations. Potential experience is normalized between 0 and 1.

In our dynamic model, the relative strength of observed matching between workers
x and firms y compared to another match can be driven by two factors: a relatively
higher surplus ®,, and next period’s workers’ expectation P, to transition to a high
return state variable x’. Here, specialized workers could be employed in a technical
occupation either because this match has high flow surplus or because workers expect
high returns from specializing further in the future. Given the estimated transition
matrices, our estimation is able to disentangle the two and estimate the surplus
parameters free from the bias of anticipation.

The estimation results for equation (19) are reported in Table 3. The ratio 2a/b is
equal to 4.87, indicating workers’ occupation-specific experience in the past five years
matters roughly four times more (subtracting 1 from 4.87 which is approximately 5)
for matching into a general or managerial job over a technical job compared to overall

potential experience in the labor market.

6 Conclusion

This paper introduces a new repeated matching games that generalizes the static,
transferable-utility matching games of Shapley and Shubik (1971) and related work to
a repeated matching game, where each period prices and matches form, flow profits are

realized by the forward-looking agents, and agent state variables evolve stochastically
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as a function of current matches. We prove existence of both a time-varying, dynamic
competitive equilibrium as well as a stationary equilibrium. We prove the key result
that the dynamic competitive equilibrium solves a social planner’s problem. Our
results are shown both for the baseline model without econometric errors, as in the
static Shapley and Shubik (1971) and related work, and a model with econometric
errors, as in the static Choo and Siow (2006) and related work.

We provide computational tools for determining both a dynamic competitive equi-
librium and a stationary equilibrium, for both the models with and without econo-
metric errors. We show how to modify the models for stationary equilibrium for
structural estimation of the parameters in the production to a match, using data on
changing relationships over time. Our empirical illustration for elite Swedish engi-
neers finds that recent work experience is roughly four times more important than

total labor market experience in sorting into managerial instead of technical jobs.

A Proofs

A.1 Proofs of Results in Section 2
A.1.1 Proposition 2

Proof. We rely on Romeijn and Smith (1998), a paper on linear programming with
a countable number of terms in the objective function and a countable number of
constraints. This paper reverses the term primal and dual from our usage. In other
words, the maximization problem, our primal, is called the dual in Romeijn and
Smith. To avoid confusion, we will use the terms from our paper in this proof.

The formal dual from Romeijn and Smith uses control variables U? and f/yt that
are the present discounted values of future utility from the viewpoint of the initial

period, so that U}é = B'UL. Our dual program then becomes
min {Z mmﬁg + Z ny%()}
usve TeX yey

subject to

UL+ V> B'Cuy+ > Py U+ Quiu Vi VE>0,2€ X, ye )y

r’'eX y'ey
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U; Z E Px/‘w()[};frl \V/t, re X
z’'eX

v rt+1

Vyt > Z Qz,/’\OyVyt/+ Vt,yel.

y'eY

To verify that this is indeed the dual under the definition used in Romeijn and Smith,
we need to show a crosswalk between our paper’s notation and the notation used in
Romeijn and Smith. We use bars to refer to the symbols in Romeijn and Smith
within this proof, as some of their symbols are the same as symbols we use for other
purposes.

The crosswalk with Romeijn and Smithisi — t+1,¢, — (m",n")", G — 0Vi > 2,
T; — (U=HT, (VYT A;;_ is a matrix (defined independently of i) of size
(XNY] + |X| + Y]) x (JX] + |Y|) that is such that A;; 4 (g) is the vector obtained
by stacking U, + f/y, U, and \~/y in the row-major order.! Next, A;; = —(P",QT"),
b; — 1@ where ® is the vectorized version of the match production matrix including
values of 0 for being unmatched, and 7; — p~! where u is the vectorized version of
the matching matrix. As we include outside options with production levels of zero,
the nonnegativity constraints on the control variables in Romeijn and Smith will be
satisfied in our dual.

Now, that we have derived the dual, we wish to prove strong duality, which means
that the optimized objective function values of the primal and dual are equal. We refer
to Corollary 3.9 in Romeijn and Smith to prove strong duality. This corollary requires
upper bounds on the control variables each period. We let u; = (5{_1 max ®)1jx|¢ [y
be an upper bound on the discounted payoffs of agents of any type. Similarly, we let
v; = (max (M, N))1jx|y|+|x|+/y be an upper bound on the mass of matches of any
type.

The condition in Corollary 3.9 is

. _T ___ -
lim v, |A774(4 = 0
71— 00

where |A;; | is the matrix obtained by taking the absolute values of all entries in
121;,;,1 term by term. By substituting in the definitions of the terms, one can see that

the this expression is of the order of 37, and by Corollary 3.9, strong duality is proved.

HFor example, if ‘f(‘ = |Y| = 2, we have flm_l(g) = (U, + Vi, Uy + Vo, Us + Vi, Us +
‘721017027‘71a‘72)—r'
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A.1.2 Theorem 1

Proposition 2 states that strong duality holds for the primal and dual countably
infinite linear programs and the text after the theorem states that many properties
familiar from the analysis of finite linear programs immediately apply to our problem,
given that strong duality holds.

Let’s first show the forward direction, where we start with primal and dual solu-
tions and show that a DCE can be found. At time ¢, let u* be the optimal policy of
the social planner for the aggregate state (m',n') and let (U, V") be the associated
Lagrange multipliers on the primal constraints. Then (U', V) satisfies the dual’s

inequality conditions, which imply

Vi B Quin Vg SUL—ouy =B Poin Ui VreXyed (20)

y'ey r'eX

with equality if pf, > 0. Thus w' defined in (7) is indeed well defined, and implies
that
UL > oy + why + B8 Y P, UL
z’'eX

holds for all x and ¢, with an equality if ,uiy > (0, which implies that

t __ t t+1
Um - :rqré%})o({&xy + wzy + ﬂ ;XPZ,L’EZJUx’ }
X

A similar statement can be made for V!, and thus equation (4) in definition 1 is
satisfied, which shows that the tuple (u,w) is a DCE.

For the other direction of the argument, we need to show that a DCE satisfies
the optimality conditions of a linear program. Let (u, w) be a DCE and let (U*, V),
be the associated continuation values, as in Definition 1. Then every u' is feasible
by definition, and hence satisfies the social planner’s primal problem’s feasibility
conditions. To check the dual problem’s feasibility conditions, note that by definition
of the DCE:

UL (w") > agy +why, + 8> Pojoy U (w"V) Yo,y € XYy

r’'eX
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and

Vyt (w(t)) 2 Vay — w:l::y + B Z Qy’|xy‘/;/t/+1 (w(tJrl)) \V/l’, Y < Xo y .

y'ey

Adding these two inequalities for every z,y € X' Y gives
U (w?) +Vy (w') = @y

Iy (Z p ,lnytJrl t+1) Z Q, |xthH ( t+1))) ’ (21)

z'eX y'ey

which is the first inequality in the social planner’s dual problem as shown in the
main text. The next two inequalities in the dual problem are also satisfied by similar
reasoning.

Finally, there remain to check the complementary slackness conditions:
(B U2 () 5 )

+5<Z P,‘wyUtH t+1) ZQ?J |zthH( (t+1) ))) —0 Vx,y cxXy

z'eX y'ey

( UL (w?) + 8> PuaoUL™ (w ”1))) =0 VeekX

r'eX

< Vt +ﬁZQy\0yvt+l( t+1)>:0 Vyey.

y' ey

These are obtained by the definition of a DCE: if ufcy > (0, then option z is optimal
for y and conversely, and thus (21) holds as an equality. (u*), and (U*, V"), therefore
satisfy the primal equalities, the dual inequalities, and the complementary slackness
conditions. Therefore, the components of the DCE are optimal for the social planner

problem.

A.1.3 Theorem 2

Proof. Define the set-valued function ¢ : L — L by

¢ : (m,n) = {(Pu,Qu) | psolution to (6) given (m,n)},
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where we recall that L = {(m,n)] doaMy =M, > n, = N}. This associates the
next period’s population counts to the present period ones. There can be multiple
solutions u to problem (6), so ¢ is a set-valued function.

We show that ¢ admits a fixed point using Kakutani’s theorem. To apply the

theorem we need the following:

(1) L is non-empty, compact and convex.

(2) ¢ has closed graph, where the graph of ¢ is

Gry = {(m,n,m’,n') € L x L|(m',n) € p(m,n)}.

(3) The set ¢(m,n) is non-empty and convex.

Consider point (1). Clearly L is non-empty. Compactness arises because L is
closed and bounded. For convexity, consider two aggregate states (m,n), (m’,n’) € L.
Then, on the worker side, > 60m, + (1 —60)m), = 0M + (1 — )M = M and the same
applies on the firm side. Hence the linear combination (8m+ (1 —60)m’, On+(1—0)n')
also belongs to L.

To show point (2), we use the closed graph theorem (recalled as Theorem 17.11
in Aliprantis and Border (2006)) for set-valued functions, which states that if o : L —
L is upper hemicontinuous and ¢(m,n) is a closed set for all (m,n) € L then Gr,, is
closed.

We use Berge’s maximum theorem (Aliprantis and Border (2006), Theorem 17.31)
which states that if

(a) the correspondence C(m,n) = {u|p € M(m,n)} is compact-valued and contin-

uous and

b) the objective function u — D tley + BW (Pu, Qu) is continuous,
yHay

zy€Xo Vo

then the set of solutions p is upper hemicontinuous in the argument (m,n), with
non-empty and compact values. Because the set of solutions is compact and lies in a
metric space, the set is also closed, the other condition of the closed graph theorem
for set-valued functions.

We now show points (a) and (b). Lemma 6 in the Supplementary Material shows
point (a). Point (b) is straightforward because p enters the per-period payoffs lin-

early, we know W is uniquely defined across across all solutions and continuous from
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Proposition 1, sums like Pu are themselves linear (continuous) functions of p, and
compositions of continuous functions like W(Pu, Qu) are continuous.

Point (3) of Kakutani’s theorem is that ¢(m,n) is non-empty and convex. We
just used the maximum theorem to show that ¢(m,n) is non-empty and compact.
Convexity follows from the fact that ¢(m,n) is the set of maximizers of the function
i — nyexo vy Paytlay + BW (Pp, Qu), which is concave, and therefore, is a convex
set.

O

A.2 Proofs of Results in Section 3
A.2.1 Theorem 5

Proof. As in the proof of Theorem 2, define function ¢ : L — L by

¢ (m,n) = (Pp(m,n), Qu(m,n))

where p(m,n) is the social planner’s optimal policy given aggregate state (m,n),
i.e. p(m,n) solves (13). There is a unique social planner solution to the regularized
problem.

We show that ¢ admits a fixed point using Brouwer’s theorem. To apply the

theorem we need the following:

(1) L is non-empty, compact and convex.

(2) ¢ is continuous in (m,n).

Point (1) was shown in the proof of Theorem 2. To show point (2), we need the
function (m,n) — p(m,n) to be continuous in (m,n), as Pyu and Qu are linear
functions of p. We show continuity of p(m,n) using Berge’s maximum theorem.
We have shown in Corollary 2 that p(m,n) is the unique maximizer. To apply the

maximum theorem we need the following:
(a) C:(m,n) = {pu|p € M(m,n)} is a compact-valued and continuous correspon-
dence. This was shown in the proof of Theorem 2.
(b) W is continuous. This is shown in Proposition 3.

Since we have shown (1) and (2), we obtain with Brouwer that ¢ admits a fixed

point. 0
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Supplement to “Repeated Matching Games: An
Empirical Framework”

S.1 Proof of Results in Section 2

S.1.1 Properties of the action set

We need to prove some properties of the social planner’s action set M(m,n) and the
related correspondence C(m,n) = {u|p € M(m,n)}. We start with the following

lemma.

Lemma 6. 1. C is compact-valued.

2. The correspondence C : (m,n) = {u|p € M(m,n)} is both lower and upper

hemicontinuous. Therefore it is continuous.

Proof. The conclusion about being compact valued in the lemma is easy to see as
M(m,n) is closed and bounded for all (m,n) € L. Hence C is compact-valued.

The rest of the proof focuses on showing that the correspondence C is continuous.
First, to show that C is upper hemicontinuous, take two sequences {(m?,n’)} € L
and {y/} € M (m’,n?) that converge to (m,n) and u, respectively. We have to show
that p € M(m,n). This is straightforward since

mi:ZMiy—)ZMxyzmxandniz Zﬂiy_) Z,uxy:ny'

y€Vo y€Yo zEX z€Xo
The definition of M(m,n) requires all workers to be matched or single and all firms
to be matched or single and finite sums of elements in the sequence converge, so
w e M(m,n), as desired.

Showing that C is lower hemicontinuous is lengthier. Fix (m,n) € L and p €
M(m,n). Let {(m?,n’)} be a sequence that converges to (m,n). We will find a
sequence {x’} that converges to u and such that p?/ € M (m?,n’) for all j.

First, note that M(m,n) is a set defined by a finite number of linear inequalities
and linear equalities. As such, it is a convex polyhedron and by Carathéodory’s

theorem every pu € M(m,n) can be written as
H= Z akﬂka
k
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where the p* are the extreme points of M(m,n) and the coefficients oy, are all non-
negative and sum to 1. Each extremal point p* is the unique (by being an extremal

point) solution to

mlnu bt Z,uzy My, Z Py = (S.1)

y€Vo T€Xo

for some appropriate choice of a direction vector W¥. Note that the coefficients oy,
are specific to the limit point (m,n) for the social planner’s state variable and the
desired limit point p for the social planner’s choice variable fixed above.

Define our candidate sequence {u} as follows:

W= Z&kuj’k where each p”* solves mmu st Z Py = ml, Z fgy = TV
k

y€Yo TEX

The coefficients ay, are specific to the points (m,n) and the p fixed above and so this
is not another application of Carathéodory’s theorem. Also note that the direction
vectors U¥ are from the direction vectors corresponding to the extreme points of the
limit set M(m,n), as implicit in (S.1). Because the coefficients «y are nonnegative
and sum to 1, g/ as defined is a convex combination of points in M (m?,n’) and is
in that set.

If we can show that for each k, u?* converges to the solution of (S.1) as j — oo,
then we will have shown that ;/ — u. Note that if we could apply the theorem
of the maximum to (S.1), we would be done, as the unique solution to (S.1) would
by that theorem be continuous in (m,n). However, applying the theorem of the
maximum requires the output of Lemma 6, which we are trying to prove, so this is
not a profitable direction.

Because no element of the tuple g can be more than the number of workers or
more than the number of firms, there exists a compact superset that contains all the
sequence sets M (m/,n?) as well as the sequence limit M(m,n). Because p’ lives in
this compact superset, it converges to some /i, up to extraction, within this superset.!?
This compactness argument does not show that gz € M(m,n).

We show that fi is a solution to problem (S.1) by using the compacity of (S.1)’s

12The phrase ”by extraction” means that a convergent subsequence can be found. The phrase
avoids needing to introduce separate notation for this convergent subsequence.
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feasible set and its dual’s feasible set’s compacity. Problem (S.1)’s dual is

max E Myly + E nyvy 8.t Uy + v, < \Ifﬁy, u, < Wk v, < \Ifgy Vz,y,
u,v
reX yey

whose feasible set can without loss be made closed and bounded and hence compact.'?

The Lagrange multipliers v/ and v/ for the primal problem for index j are the
solutions to the dual for index j. The dual for the jth index is where each m, is
updated to mJ and each n, is updated to nJ.

As by a previous argument the feasible set for the dual is compact, we can con-
struct a product space of compact supersets where the tuples (u/,v’, u?) converge by
extraction within this product space of compact supersets to the tuple (a, v, 1). This
is reminiscent of econometric theory, where parameter spaces are often compact in
order to ensure convergence of an optimization-based estimator.

We wish to show that this tuple satisfies the optimality conditions for the primal

and dual problems

Z,ug;y:mfc and Z u”@zniVxEX,yGlV
y€Vo z€Xg

1, > 0Ve € Xo,y € Vo
ué—i—vig‘l!k ul < Wk andvigllllgy‘v’xeX,yEy

Ty x

S i, (ol =) > gy (wh - W)+ 3 i, (v~ W) = 0V e Xy € V.
z,y T Y

By inspection, these optimality conditions are continuous in (m’,n?,u’, v’ 7) and
so converge to the optimality conditions for problem (S.1). Because the solution to
problem (S.1) is unique, pu = fi.

]

S.1.2 Proposition 1

Proof. The properties of being continuous and bounded arise from Theorem 4.6 of

Stokey et al. One conditions of Theorem 4.6 is that the per-period objective function is

13There are many references on how to construct the dual of a finite-dimensional linear program.
These primal and duals look deceptively like static, two-sided matching problems but are not match-
ing problems.
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bounded and continuous; see the argument just given. Another condition of Theorem
4.6 is that the social planner’s action space C : (m,n) = {u|p € M(m,n)}, as
seen as a correspondence with argument (m,n), is non-empty, compact valued, and
continuous in (m,n). Non-emptiness is easy to verify by inspection. Our Lemma 6
shows that C is compact valued and continuous.

Let B(L) be the space of bounded continuous functions V' : L — R with the
sup norm, denoted ||.||. To show that W (m,n) satisfying (6) exists, we follow the
same proof technique as in Stokey et al. (1989), Theorem 4.6 and show that operator
T : B(L) — B(L) defined by:

(TV)(m,n) = max { > <I>xyuxy+ﬁV(Pu,Qu)},

eM(mm
a (m.m) xy€Xo Vo

is a contraction. Because V € B(L), TV is also in B(L). Next, we argue that 7" is a
contraction in B(L) for the sup norm using Blackwell’s theorem, which, as we recall,
states that if T is order-preserving and satisfies T(V + ¢) = TV + f¢, then T is a
contraction of modulus f for the sup norm. These two conditions are easily satisfied,
and thus 7T is a contraction for the sup norm, which shows that equation (6) has a

unique solution in B(L).

Next, we need to show that the solution W to equation (6) is concave. To do this,
we follow again the argument in Stokey et al. (1989), Theorem 4.8 and we introduce
the space CVB(L) of functions that are concave and bounded on L. This space
is a subset of B(L), and we show that it is stable by T. Indeed, the Lagrangian

formulation for TV (m,n) yields the following expression for TV (m,n):

HEM(m,n) cye Yo

= max min mxux Znyvy—l— Z Py (Pry — Uy — vy) + BV (P, Qu)

pray >0 a0y 4

= max { > uzyq)nyrﬁV(Pu,Qu)}

yey zyeXoo
= nz}lvn Z Mylly + Z Ny, + max { Z Yoy (Pay — Uy — vy) + BV (Pp, Q,u)} ,
TEX yey = Nayexodo

where strong duality applies between lines two and three. This shows that 7'V (n, m)

is concave in (n,m). As a result, 7" has a unique fixed point in C'V B(L), which
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coincides with W. This shows that W is an element of CV B(L), and therefore, that
it is a concave function.

]

S.2 Proof of Results in Section 3

S.2.1 Lemma 3

Proof. From equation (3.5) in Galichon and Salanié (2022), we have that G (=—+t=—)

Zyeyo Hzy
—Eley], where Y is the alternative y € ) chosen by an agent of type = with unob-
Mz
yeWo” yeyy Moy

ley > 0. Hence G* and H* are well defined by Assump-

servable heterogeneity vector (e;,) is

well defined as -
tion 2. By taking absolute values and applying the triangle inequality, one has

Assumption 3 ensures the ratio T

|G*(m)| < >,y Elley|], where this upper bound depends only on the dis-
tribution E It is finite by Assumption 1. A similar bound can be computed for H,.
This proves the result, as is a weighted sum of the functions G} and H;. G* and H*

are continuously differentiable by Assumption 2, hence p — £(u) is continuous [

S.2.2 Proposition 3

Proof. We follow the same steps as in the proof of Proposition 1. Showing the condi-
tions of monotonicity and discountability are straightforward. Lemma 3 ensures the
objective function is continuous and bounded. A key difference with Proposition 1 is
that the entropy function p — () is a strictly convex function, and since the differ-
ence between a concave and a strictly convex function is strictly concave, we obtain
the strict concavity of W by directly citing Theorem 4.8 of Stokey et al. (1989). [

S.2.3 Proposition 4

Proof. The main challenge here is that there is a nonlinear program with a countably
infinite number of controls and a countably infinite number of constraints. The main

paper we refer to is Luc and Volle (2021). In Luc and Volle, the primal is

inf th (A9 (Plv)

(At eK
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where K is a closed convex set.

Let the per-period objective function contribution be
) = (EN) =T @),

where the entropy term is
t t * )\i t * /\ty
=Y (L) e (i )+ X (X)) 1 (225)-
zeX \ye)o Zyeyo ryY yeY \zeXy Zwe){o Ty

Note the change of variable from the main text: X' = 3'ut. Let also

. {A >0 Zven N = s and T X, = 1 } |
B(PATY), =30 ey Ay and B(QNT) =30 0 ALt > 1

We omit a formal argument that K is closed and convex, but the latter property
arises from the linearity of the terms in the definition of K. Our social planner
problem (10) under (11) and (12) is the inverse of Luc and Volle (2021)’s primal:

— sup Z—ft(/\t).

(M€K T

Let f; and 0} be the convex conjugates of f; and dg, where dx(A) =1 {\ € K}.

Luc and Volle (2021)’s dual is, for an arbitrary control variable d",

sup - (Z {f7(d)}+ 5%(—(dt)t)> : (Dlv)

which with our change of sign becomes

~ inf (Z {fi (=} + 6;;<<dt>t>> ,

with this equivalence shown using standard properties found in convex analysis text-
books. Theorem 4 in Luc and Volle (2021) states that if

1. The functions f; are proper, convex, lower semicontinuous and have compact

domains Vt.
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2. (f"); satisfies Y, || f¢]| < oo for the sup norm.
3. f; is non negative Vt.

4. The primal has a feasible solution.

then min (Plv) = sup (Dlv), meaning that the duality gap is zero and the optimum is
attained for the primal.

Note that a proper function in convex analysis is a function that is never —oo and
is not 400 at at least one argument.

We now show the four conditions above hold. Starting with the first condition,

for all ¢, f* is defined on the following compact domain:

DY A =MD )\xy:BtN}.

zeX yeVo yeY xzeiXo

dom(f;) = {)\ >0

The only nonlinear part of f; is the the entropy term £(A"). This entropy term £ (\)
is comprised of a weighted sum, with nonnegative weights, of the convex conjugates of
social surplus functions. If G(u) is a social surplus function, then its convex conjugate

is

G*(p) = sup {p-u—G(u)},

uGJyO

where Jy, is the number of y-side types in Vy. A convex conjugate of a social surplus
function has a domain equal to the probability simplex of dimension Jy,.

Note that the convex conjugates of particular social surplus functions are them-
selves sometimes called negative generalized entropy terms. The full-support Assump-
tion 2 needs to be invoked to ensure that the social surplus functions G(u) have good
properties and that, as we will show, the convex conjugates G*(p) of social surplus
functions. To reduce the length of the proof, we assume knowledge of the properties
of social surplus functions G(u) under Assumption 2 and focus on deriving properties
of the convex conjugates of social surplus functions. These properties are then inher-
ited by £(\'), the weighted sum, with nonnegative weights, of the convex conjugates
of social surplus functions. If £(\') has a certain property, then likely f; will inherit
that property as £(A\') enters f; linearly with a positive multiplicative coefficient and
the other term in £(\) is itself linear in the argument A\* and A’ is restricted to the
set K.
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We now show that G*(p) is proper, as defined above, taking as known from prior
literature that G(u) is proper under Assumption 2. By the latter property, there
exists a value u such that G(u) < oo. By inspecting the definition of G*(p), we can
see that G*(p) cannot be —oo for any p as the goal is to take a supremum over u of
a term where G(u) enters with a minus sign and we know that there is at least one
u where G(u) < co. Also, choosing p = 0 clearly shows that G*(0) < co. So G*(p) is
proper and hence £(A') is proper. Inspecting the definitions of f; and the constraint
set K, we can see that f; cannot be made to be —oo everywhere on a value in K, so
f+ is proper.

Since the function G*(p) is convex, it is continuous in the interior of its domain.
Using this result and then inspecting the relevant formulas, the weighted sum ()
is continuous and the linear function f; of £(A?) is continuous. A continuous function
is automatically lower semicontinuous.

The convex conjugate G*(p) is almost by definition convex, as it is a convex
conjugate. Each G*(p) enters positively into the otherwise linear £(A\') and f;, so
both £(A) and f; are convex.

For the second condition in Theorem 4 of Luc and Volle (2021), we need to show
that >, || fi|| < oo for the supremum norm. The argument in the proof of Lemma 3
implies that G*(p) < oo for all p. From the definition of the domain of f;, we know
that any \; € dom(f;) is such that Y3 > - AL, and X7 3" 4 AL, tend to 0
as t tends to infinity. Since A, > 0 for all ¢, this implies lim; ., AL, = 0 for all z and
y. As G* is bounded, this implies that lim; ., f;(A;) = 0 for all A, € dom(f;), and
therefore >, || f|| < oc.

For the third condition in Theorem 4 of Luc and Volle (2021), f* as such is not
nonnegative for all ¢: it could be that for some X in dom(f), £(A) < AT®, in which
case f'(\) < 0. However, we can modify f* such that the solutions to the primal
and dual and the properties of f* shown above remain unchanged. Add the positive
constant 5" max{M, N} max{®} to every f'. The newly redefined function f* is non-
negative for every A € dom(f;) and adding a positive, finite constant does not alter
the previously established properties.

For the fourth condition in Theorem 4 of Luc and Volle (2021), we need to show

that the primal has a feasible solution. A simple feasible solution for (Plv) is A such
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that:

)\gy:(S’ = m _Z)‘J»‘y’ 0 :ng—Z)\gy Vee X,ye)
yeY zEX
My =06, Mo=BPNT), =) A, A QN7 =D M, VreX yeY vi>0,
yey reX

where ¢ is an arbitrarily small positive number.
The conditions for Luc and Volle (2021)’s Theorem 4 are all satisfied, so the

objective functions of the primal and dual are equal at solutions:

o0

(;f%?eXK - = mf <Z f(=d") +o; ((dt)t))

t=0
at the optima. This result is the main notion of strong duality shown in Luc and
Volle (2021).

However, there are limitations of this strong duality result compared to the strong
duality result in the statement of the proposition being proved. Therefore, we need

two more parts to this proof.

(1) We need to transform the dual(Dlv) into a more intuitive, computationally

attractive form, as shown in the statement of the proposition.

(2) Luc and Volle (2021)’s theorem does not specify if the infinum is attained in
the dual, which we need to later show the equivalence of a dynamic competitive
equilibrium to the dual solution and to show that computational methods have

a well-defined target to compute.

We start with goal (1), deriving a more intuitive dual. Recall that the existing
dual (DIv) contains two terms for each ¢. Let us tackle them one at a time.

The per-period primal objective contribution f;’s convex conjugate is
fi(~d) = max{—£(\) + X7 (@ — d)}
=&(P—d).

While £(\) itself is a comprised of a weighted sum of convex conjugates of social
surplus functions, here the new £*(\) is the convex conjugate of E(\).

An important result is that £* is either 0 or 0o, as shown in the following lemma.
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Lemma 7. £*(() = 0 if there exists & = (Uyy)zexyey such that G,(a) < 0 and
H,(¢(—u) <0 forallz e X,y ), and £*(() = oo otherwise.

Proof. The definition of a convex conjugate £*(¢) involves maximizing over some
value p. Based on the definition of £(u), it is instructive to thinking of this as an
inner problem of maximizing over the set of feasible matching probabilities in some
matching problem, M (m,n) = {,u > 0] > ey Hay =My and Y-y fay = ny} and an
outer problem where the masses of types (m,n) are maximized over. The pair of
the outer and inner maximization problems searchers over all u, as in the original
definition of £*(¢). Exploiting the fact that p enters linearly into the definition of

E(u), the inner and outer maximization problems let us rewrite £%(¢) as

() = B i {< Smc () - Lo y(n)}

reX yey

Consider the inner optimization problem. By Theorem 3 in Galichon and Salanié
(2022):

e, - Yo () - (1))

reX yeY
= min {Z m. G (a) + ZnyHy(C — ﬁ)} ,
“ zeX yeY

giving a reformulated inner optimization problem. Return to the outer optimization
problem over (m,n). If the minimum in @ for the inner optimization problem is such
that G,(a) > 0, or H,(¢ — @) > 0 for all z,y, then in the outer problem one can
choose m, or n, arbitrarily large so that £*(() = co. Hence £*(¢) = 0 if there exists
a @ such that both G, (@) and H,(¢ — @) are below 0.

O

Now we turn to the other term in the existing dual (Dlv), d§};. This is the convex
conjugate of an indicator function. The convex conjugate of an indicator function is
sometimes called a support function for K. The first equality in the below algebra
introduces the support function. Note that as A = (A\!); € !, its dual variable d is in

> (its dual space) so the support function is well-defined.
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The second equality below introduces the Lagrangian with respect to the con-
straints K. The requirement from K that A\ > 0 is kept in the supremum and
not incorporated as a separate Lagrangian term. This means that the remaining
terms in K are all equality constraints. With only equality constraints in the La-
grangian, the Lagrange multipliers U, V' can be both negative and positive. As usual,
the Lagrange multipliers do not enter the original problem’s objective, here the sup-
port function. One can see that an infinum over the Lagrange multipliers has been
added. Using generic notation, the problem of max.,, g(z) + vh(z) is equivalent to
max, ¢(z) + min, vh(z), as either way the solution involves setting the Lagrange mul-
tiplier A to 0 when the equality constraints are satisfied and picking A to drive the
entire objective to —oo when the constraints are violated.

The third inequality involves swapping the inner and outer problems, with the
infinum now being the outer problem and the supremum being the inner problem.
This is arising from the strong duality proved in Romeijn et al. (1992), as the objective
function is linear and the constraints are affine. The nonnegativity constraints are
satsified, and because we have already shown that \! — 0 entrywise as t tends to
infinity, so is the stationarity constraint.

The fourth equality holds because the outer optimization problem will make the
parenthetical terms inside the supremum negative, so the inner problem is solved
by setting © = 0 and the problem can be rewritten as a single-layer constrained

optimization problem.

83 (d) = sup {Z A”dt}

AeK >0
= su Tt
+ inf {UOTmO + VTR0 = > U? (Z )\xy) -y (Z Axy>
’ TEX y€Vo TEX TEX)

59 3 CTEIED 3
t>1 zeX y€Yo

csxu ooz )
t>1 yey T€EX(
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+ sup { Z A, (BPTU™ +QTVH Y, — UL = V) +d.,)

= TyeX'y
+ 3 MG (BPTU ) g0 — UL+ diy)
zeX
F (@ - v )
yey
— bn‘g {UOTmO + VOTTLO} . U;, 4 V;/t 2 dtxy 4 5 (PTUtJrl 4 QTvt+1)xy’ t 2 0

UL >dhy+ 8 (PTUTY) ,t2>0
Vy = dy, +8(QTV™),,  t>0.

Next, we put f;" and } together by ensuring the constraints in Lemma 7 are met,
so that f; is 0. Then the dual is

. . 0770 07,0
inf inf m g n

dt.Ut Vvt gt xUm + ?J‘/y
7 reX yey

st UL+ V) >db, + B (PTUT +QTVH)
UL >dhy+ B8 (PTUT) ,t>0
Vi>di, +B(Q'V"™, . t>0
G, (0') <0,t>0
Hy,(®—d —a") <0,t>0.

t>0

zy’

Oy

The first three constraints in the problem above are saturated. We will use a proof
by induction. The objective is minimized if U, and Vj, are as small as possible. Hence
the constraints are saturated at t = 0. As part of the proof by induction, assume the
constraints are saturated at ¢t — 1 and show the constraints must be also saturated at
t. This is because if the constraints are not saturated, then U* and/or V* are larger
than they could be, which translates to U'~! and/or V! also being larger than they
could be through the constraint, and down the line until U° and V° are larger than
they code be, contradicting the previously established property for U® and V°.
Together all constraints imply that

Gm (at) < 0 and Hy (CI) o (U:z(‘; + ‘/yt o ﬁPTUt+1 _ 5QTvt+1) _ at) <0.
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where we have solved for d' using the first three saturated constraints above and
plugged it into the last constraints. Let ul, = U} + i}, and v' = —ul, + & +
B(PTU™ +QTV'™) then

G, (ut — U;) <0and H, (vt —V;f) <0,

which implies
Go(u') <UL and H, (v') < V.

We will change the control variables to be something more interpretable. The dual

inf inf » " miUS+ > nlV)
Ut V't ut vt vy

reX yey

becomes

s.tul, +vh, = Ouy + S (PTUT +QTVY)
U = Pao + B (PTUT)
voy = Doy + 8 (Q" V),
UL > G,(u')
V) > H,(v'), t>0.

Y

Y

The last two inequality constraints are also saturated, for the same reason as above.
So the dual rewrites as
gtnft mlG,(u”) + Z ny H,(v°)
ozeXx yeY
T T
s.t uiy + vfcy =®,, +f (P Gu'™) +Q H(vt“))xy (5.2)
uly = Oo0 +  (PTG(u)

vy = Poy + B8 (QTH(W™)),

y Y

where G(u'*!) and H(v'*!) are the stacked vectors of (G, (u't!)), and (H,(v'*)),.
That concludes point (1), to derive the more computational attractive form of the

dual stated in the main text.
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Now on point (2): write dual (S.2)’s Lagrangian

0
Jtnft m, G )+ Zn H,(
reX yey

+ Z Z A (@xy + 6 (PTG + QTHW™), —ul, ~ U;y)
+ Z)\IO w0+ B (PTGW™)  —uly)

+ Z >\0y <q>0y + B (QTH(UH_l))Oy - Uéy) )

By implication of strong duality, we know that the Lagrange multipliers are the
solutions to the primal problem, so we can write that at the solution \., = S'ul,,
where p are the optimal match masses at t. Next, We can see that the first order

conditions (FOCs) to the dual’s Lagrangian are, for the initial period 0,

0G4 (ug,) OHy(v},)
For periods t > 1, the FOCs become
o 0G, (us,) OHy(vy,)
Z (Bt 11u;tiyl (/BPM:E,Z/ 8Ut . )) ILLZ‘y and Z (6t 1/1’my (5nyy a t )) = tlutzy'
zy zy

Consider the z-side FOC, on the left. The partial derivative —; - is a multiplicative
zy
constant that factors out of the left side of the FOC. The discount factor S cancels

on both sides, giving

IG , (ut OH, (v}

T\ ) — x ) —
Out - Z (Méﬂl <Pz|fvl7)) - Mtﬂfy and ayvt : Z (“gyl (lei@)) = #z:y‘
zy

For the x-side, the term Z@ (;Lg_gl (meg)) can be seen to equal m!, the mass of
workers of type x in period ¢t. So the FOCs become

G, (ul,)
oul,

t aHy(Uiy) t

m;, = fi,, and ot = Hay- (S.5)
Ty
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By standard arguments in convex optimization, we can define u' and v using G’s
and H’s Legendre transforms:
_ 96 () 01 ()

t m and !, =

Uy = HHay zy Oy
Mg Ny

u and v are then solutions to the dual (S.2).

S.2.4 Theorem 4

Proof. This proof rests on the use of duality: we show that the dynamic competitive
equilibrium is equivalent to the social planner problem through its dual, in the same
fashion as Dupuy and Galichon (2014) and Galichon and Salanié (2022). Unlike
these papers however, our social planner problem has countably infinite controls and
constraints. Proposition 4 shows strong duality for our social planner primal and dual
problems. Also, we should point out again that our social planner problem is not a
linear program as in the model without econometric errors.

First we show that the direction that says solutions to the primal and dual prob-
lems yield a DCE. Given a solution (u,v"); to the dual (S.2), let the wages be given
as (15) in the statement of the theorem to be proved. Rearranging the wages in (15)
to solve for u}, and v, will give the same utilities as on the right sides of (9), up to
the error terms.

Let us consider the dual problem’s Lagrangian (S.3), as in the previous proof.
The dual Lagrangian’s FOCs (S.4) and (S.5) remain as in the previous proof. By
the Williams-Daly-Zachary Theorem, the partial derivatives in the FOCs equal the

choice probabilities

~ t t
Pr (y € arg maxu,, + ey) .
y€lo

Using the proposal for equilibrium wages w;y in the statement of the theorem, we

can solve for ufny and substitute in for that term in the choice probability, giving

Pr (g € arg max <a$y + wiy + 62 + 3 (PTGw(“Hl))xy)) :

y€Vo

The term (PTGI(utH))W involves an integral over €’s and it can be expanded to
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match the notation in the formula in the definition of a DCE,

Pr (gj € arg max oz, + wéy + 62 + Z PzE [Ui;f’l (w(t+1), et+1)]> .

yeDo z'eX

Returning to the z-side in equation (S.4), we divide ), in the FOC by m) = 37, ud,

and, after reversing the direction of the equation as written, we end up with

Zﬂio =Pr (g € argmax az, + wgy + 62 + B Z Pz E [U;, (w(l), 61)]) ,
yevo Hay yeXo 2EX

as defined in the definition of a DCE, Definition 3. Therefore, we satisfy the
requirements for Definition 3 for matched agents in period 0. The argument for the
unmatched z-side agents and the y-side agents are quite parallel.

For periods t > 1, applying the Williams-Daly-Zachary theorem indicates that
the partial derivatives are choice probabilities as in the definition of a DCE. For
the z-side in equation (S.5), diving by m!, gives the choice probability equality in the
definition of a DCE. The arguments for unmatched z-side workers and all y-side firms
are parallel. So we have verified Definition 3 and we have a DCE.

The other direction of the theorem starts with a DCE (u,w) and ends with p
solving the primal problem and the v}, and v}, calculated using the expressions for
the expected present discounted lifetime utilities solving the dual problem. All we
need to show is that u';y and vay solve the dual problem with the Lagrange multipliers
,ufﬂy, as by the strong duality Proposition 4 the primal problem will also be solved.

The argument that the dual FOCs are solved is almost immediate from prior
arguments, as we can simply multiply the probabilities in Definition 3 by the masses
of each agent type, m’, or nZ, and get the dual FOCs derived above. We do not need
to check second-order conditions by convexity. Therefore, the DCE yields a solution

to the dual and hence the primal.
O
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S.3 Methods for Equilibrium Computation

S.3.1 Constant Aggregate State Without Econometric Er-

rors

Computing the constant aggregate state and associated stationary equilibrium for

the model without econometric errors can be done by solving the following quadratic

problem:
i, D e (Uz V= By = (Z Us Py + wy/lw))
xy€Xo Yo z'eX y'ey
s.t Z Hzy = Z Px\x/y/,ux’y’ Vere X
y€Xo ' y'eX Vo
Z /’ny g Z lemly/uxly/ vy e y
z€XD 'y eXo Y (S 6)
Ux + ‘/;J Z (I)xy +B (Z Ux/Pa;/|ajy + Z Vy’Qy’my) Vl’ c X,y € y
r’eX y'ey
Ux > B Z Ux’Paz’|x0vw eX
z’'eX
ViZB) VyQuoyYyed.
y'ey

The formulation as a quadratic problem ensures that the complementary slackness
condition in Definition 1 is enforced. The constraints yield a constant aggregate
state. Solving this quadratic problem is relatively straightforward, using a package
such as Gurobi. We show that the optimal p obtained in (S.6) is part of a stationary

equilibrium in the following proposition.

Proposition S.6. The solution p to problem (S.6) is part of a stationary equilib-
rium. The resulting aggregate state (m,n) = (Zyeyo Hays D zexs ,uxy) is a constant

aggregate state.

Proof. Let (u, U, V') solve problem (S.6). Then the tuple (u, U, V') satisfies the primal

feasibility, dual feasibility, and complementary slack conditions for the social planner
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problem at (m,n) = (Zyeyo Hays Dweo ,umy). It is straightforward that

(m7 n) = < Z Px\x’y/,ux’y’a Z Qy|x’y’ﬂm’y’>

z/7y/€Xy0 ff/:y/GXOy

and therefore (m,n) is a constant aggregate state. O]

S.4 Structural Estimation

It is easy to transition from computing a constant aggregate state and its associated
stationary equilibrium to estimating the model parameters, if one assumes that the
data come from a constant aggregate state. The minimal data set comes from one
market in stationary equilibrium and has cross-sectional data on x,y, 2’, 1 for a ran-
dom sample of matches (z,y) from that market, where 2’y are the states of the two
matched agents at the beginning of the next period. Data sets with longer panels can
also be used, as we illustrate in our empirical application to the careers of Swedish
engineers in Section 5.

We use the data on matches (z, y) to calculate the observed matching probabilities
flzy, as well as fi,o and fig, for unemployed workers and vacant jobs, respectively.
Throughout this section, we assume that i is a stationary equilibrium.

The structural parameters are «, v, P, @) and . In estimation, we assume that
the transition rules for the individual worker and firm states P and () are estimated
in a first stage, as is often done in dynamic discrete choice models (e.g., Rust, 1987).

We focus on a second stage in which structural parameters are estimated. Based
on identification results for static matching games, starting with the theoretical char-
acterizations of Becker (1973) and the logit model of Choo and Siow (2006), we
estimate parameters in ® = « + 7, the match production function, defined to be the
sum of the worker amenities and the firm output for a given match. We parameterize

match production ¢ by
L
ay(V) = D Ndh,
=1

where each ¢! is a basis function of types x and y, and A = (A');<;<, are the parameters
we estimate. We fix the discount factor 5, as is common in single-agent dynamic
discrete choice models such as Rust (1987).
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S.4.1 MPEC for Estimation

To estimate the model on cross-sectional data x,y, 2,9, assuming that the observed
equilibrium is stationary, one simply needs to augment the primitives (m,n,U,V)
with parameters A\, and maximize a log-likelihood function on matching ; under the

feasibility and stationarity constraints from (16). The log likelihood is

INUVimn) = 3 finy log ey WUV, U V,myn) — Nlog N (AU, V,U, V.m,n).

TyeX Y

N (N, U, V,m,n) counts the total mass of matches and unmatched agents on the

market:

N AU V.mn) = 3" piey (\U,V,U,V,m,n)

TyeX Yy
+ D a0 N UV,UVmn) + Y oy (AU, V.U, V,m,m)
TeEX yey

and A is its observed equivalent. The product N log N' converts counts from /i
and p to probabilities required in the likelihood function. Maximum likelihood is
statistically efficient except for the first-stage estimation of the transition rule P and
(). Full efficiency can be gained by simultaneously estimating A, P and () using

maximum likelihood.

S.4.2 Primal-Dual Algorithm for Estimation

To adapt the primal-dual algorithm for estimation, we augment the set of primitives

with the structural parameters A and replace function Z by Zg:

Zest()‘a U7 ‘/7 Ula Vla m,n, B) = Z()‘a U7 V> Ul? Vla m,n, ﬁ)
. S.7
= D fay®ay(N). 5.7

TyeX Y

When 5 =1 we solve an augmented version of the min-max problem (17):

min max Zeg (A, U, V, U, V,m,n, 1).
UV mn
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The difference between Z and Z. resides in the additional term — nye Xy flay Doy (N).
This term produces the following moment conditions when computing the first order

conditions with respect to A for problem (S.7):

> haydl, (N = D pay(NUVU Vymon, B)¢h, (\) VI=1,... L.

TyeX Y TyeX Y

When g8 < 1, we use the Chambolle-Pock algorithm applied to Z. to converge to the
feasibility, stationarity and moment conditions. Choose an increment 7, a threshold

§, and initial values (A%, U° V9 m° n®) and (m!, n'). Tterate on k according to:

Intermediary (m,n) {

ARFL = Nob — 7 (OuZE) VIi=1,...,L

(A, U, V) update § UKt =UE -7 (8y, 25, + 7100, ZF) VzeXx  (S8)
VI = VF — 7 (0, 28, + 6710 Z%) Wy el

ML — b 4 70, 25 Yo e X

m,n) update ¥
(m.n) { nitl =nk 470, Z5Y Wy ey,

Y y“est

where
est

Zk+1 — Z()\k+17 UkJrl’ Vk+17 UkJrl’ ‘/kJrl7 mk) nk7 ﬂ)

est

{ Zk = Z(\F,U*, VE Uk VE ik 7k, B)

The stopping criteria is

max (‘)\k-i-l _ )\k} , ‘Uk—H . Uk:

’ |Vk+1 o Vk‘l ’ ‘mk’-i-l _ mk’

i = nk]) <6

S.4.3 Estimation Method Comparison

As we do for equilibrium computation, we compare the MPEC and primal-dual meth-
ods in structural estimation in Table S.1. We vary the number of types on each side
of the market, as well as the number of parameters to estimate. MPEC proves once
again faster than the primal-dual method in markets with low numbers of types and
parameters to estimate, L, and is slower when markets have a large number of types

and the model has a large number of parameters to estimate.
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Table S.1: MPEC and Primal-Dual Performance - Structural Estimation

HX X#Y XL 2X2x%X2 10 x 10 x 10 30 x 30 x 30 100 x 100 x

100
MPEC

Min iter. nb. 4 6 8 9

Max iter. nb. 46 7 12 12

Mean time elapsed .0028 .0342 2.494 161.8

Primal-Dual

Min iter. nb. 6033 3329 3528 7980

Max iter. nb. 19443 5286 4072 8315

Mean time elapsed .0347 .0791 1.391 94.09

Notes: Program ran in Julia on a Macbook Pro with a M2 chip, 16GB of RAM, and 8 cores. The
nonlinear solver for MPEC is KNITRO. Statistics computed on 10 replications. The convergence
tolerance is 10e-6.

S.5 Data for Empirical Application

Our data is collected by the Swedish Employer’s Federation (SAF in Swedish). The
sample period is 1970-1990. Observations in the panel are at an individual times
year level. Workers and firms have a unique identifier. The data contains a number
of characteristics on both workers and firms, among which worker’s age and job
occupation. We do not consider observations that report less than 35 hours worked
per week, nor workers below 25 years old. This is because becoming an engineer
in Sweden requires at least five years of studying, and as all Swedish males must
complete their military service, observations below 25 years old are scarce in the
data. The worker population is mostly male (only 9.1% of engineers are women). We
use the entire panel to estimate transitions and the stationary matching, as described
in the main text.

We use information on occupation at the 1-digit level, and classify these occu-
pations into two types: Technical and General. The Technical occupation are: Re-
search and Development, Construction and Design, Technical Methodology, Planning,
Control, Service and Industrial Preventive Health Care). The General occupations
are: Administrative Work, Production Management, Communication, Library and

Archival Work, Personnel Work, General Services, Business and Trade, Financial
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Work and Office Services. Between 1975 and 1990, 64% of observations are technical

occupation matches.

Figure S.1 shows the potential experience distribution across workers from 1975 to

1990. Most workers in the dataset have between 1 and 5 years of potential experience.

Figure S.1: z.’s distribution, 1975-1990
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Authors’ calculations from SAF data.

The share of a worker’s time spent in a technical occupation in the past 5 years
is measured starting in 1975 from the years 1970 to 1974, and over a sliding window
for the years after 1975. Since the data is a panel, one simply counts the number of
observations employed in a technical occupation by individual worker, and takes the
ratio over the number of all observations in the past five years. Figure S.2 shows the
distribution of this share across all workers between 1975 and 1990. Overall, 34.9%
of observations are workers with no technical experience, 55% are workers with only

technical experience, and 10.1% are workers with some level of technical experience.
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Figure S.2: 2’s distribution, 1975-1990
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