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Impulse response function (IRF) analysis plays a central role in empirical
macroeconomics, particularly in estimating the dynamic effects of structural
shocks. To facilitate economic interpretation of magnitudes and increase pol-
icy relevance, researchers frequently rescale impulse responses estimated with
VARs or LPs to normalize the impact on specific endogenous variables. This
scaling often means that, either explicitly or implicitly, impulse response esti-
mates are functions of ratios of ordinary least squares (OLS) estimates.

As is well known in the literature on instrumental variables (IV), ratio-
based estimators face particular statistical challenges in finite samples – see
Andrews et al. (2019) for a recent overview. The estimators can be severely
biased, and the ratio distribution can be far from the normal distribution
dictated by central limit theorems. Macro applications may be particularly
susceptible to such weak instrument problems, as samples are typically short
and the fraction of plausibly exogenous variation in the scaling macro variables
is often relatively small.

This paper develops new tools to analyze and address weak instrument
bias in just-identified IRF estimators based on tractable approximations to
their finite-sample distribution under the local-to-zero asymptotic framework
of Staiger and Stock (1997). Since the resulting distribution lacks a mean, we
measure bias using the major mode. This provides an intuitive and analyt-
ically convenient alternative to conventional mean-based definitions of bias,
and it allows us to characterize how estimator behavior depends on the sig-
nal strength of the instrument, finite-sample endogeneity, and the number of
horizons or endogenous variables considered.

Based on our analytical results, we derive three insights for applied work:

1. In the local-to-zero framework – which abstracts from all finite-sample
distortions except for those induced by a weak instrument – the modal
IRF bias in VARs never exceeds the bias in LPs, and is often smaller (for
example, whenever the number of horizons equals or exceeds the number
of variables in the VAR). Thus, when weak instrument bias is the primary
concern, researchers should prefer VARs over LPs.

2. Testing procedures for weak instrument bias in the single-equation model
(Stock and Yogo 2005; Montiel Olea and Pflueger 2013; Lewis and
Mertens 2025) are not well-suited to most IRF applications. We describe
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a simple test that is analogous to Stock and Yogo (2005) or Montiel Olea
and Pflueger (2013), but uses the modal bias in multiple IRF estimates.
The test utilizes the standard first-stage F -statistic, with critical values
that are easily obtained with built-in commands in standard statistical
software. We also describe extensions to allow for heteroskedasticity and
serial correlation using the robust F -statistic.

3. Examining a range of IRF applications from the literature, our proposed
test yields results that frequently diverge from existing procedures, and
we conclude that weak identification often remains an important concern.
We show that adding restrictions on structural parameters leads to a
more powerful constrained weak instrument test, and we describe how
to quantify the degree of restrictiveness required to rule out meaningful
weak instrument bias in practical applications.

Our results are limited to the class of just-identified models (IRFs to a sin-
gle shock identified using a single instrument), but are nevertheless relevant
as the vast majority of applications fall into this category. We adopt a strictly
frequentist perspective, though weak instruments pose very similar challenges
for Bayesian approaches (Kleibergen and Zivot 2003; Giannone et al. 2025).
While we focus on IRF estimation, our analytical results and testing proce-
dures apply more broadly to just-identified system IV estimators that consider
multiple outcome variables jointly but with a common first-stage. Finally, be-
cause the canonical just-identified single-equation model is nested within our
framework, our procedure also provides a simple, novel weak instrument test
with a sound theoretical foundation for that ubiquitous setting.

1 Weak Instrument Problems in IRF Estimation

1.1 An Illustrative Example

To illustrate the potential for weak instrument problems in macroeconomic
applications, the left panel of Figure 1 plots estimates of the IRF of infla-
tion to a one percentage point positive interest rate shock in samples of 250
quarters, generated from a simple New Keynesian model (see Appendix A for
details). The estimated IRFs are from a VAR(1) model for the interest rate,
inflation, and the output gap. To address the endogeneity of the interest rate,
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Figure 1: SVAR-IV Impulse Responses of Inflation to an Interest Rate Shock

Notes: Estimated inflation responses to a one percentage point positive interest rate shock in
Monte Carlo samples (T = 250) from a simple NK model with Gaussian shocks; see Appendix
A. Left : SVAR-IV estimates with a valid instrument and a VAR(1) in the interest rate, output
gap and inflation. “VAR OLS in Population” is the population IRF from a lower-triangular
recursive ordering with the interest rate ordered first; “Mode (Analytical Approximation)”
is the modal SVAR-IV response from Proposition 3. Right : “Simulated Density” is a kernel
density estimate for the impact estimator based on 50,000 Monte Carlo samples. Analytical
density and major mode (black circle) based on Proposition 3.

the responses are identified with random draws of an external instrument that
– in population – has a correlation of 0.75 with the true exogenous interest
rate shock in the model and is uncorrelated with the other structural shocks.
By construction, the empirical VAR(1) model is fully consistent with the theo-
retical data-generating process (DGP) and the instrument is valid, so the only
challenge for estimation is the small sample size of 250 quarters.

As the left panel in Figure 1 shows, the simulated estimates of the infla-
tion responses exhibit substantial departures from a bell-shaped distribution
centered on the model’s true IRF (solid orange line). These departures are
especially pronounced in the tails: a significant fraction of the simulated IRF
estimates show large persistent inflation increases following a positive interest
rate shock, despite the model’s true response being negative at all horizons.
Additionally, many IRF estimates exhibit much larger negative inflation re-
sponses than the true response in the model. The right panel of Figure 1 shows
a kernel density estimate of the inflation responses in the first period only. As
the figure shows, the density of the impact estimates is not centered on the
true value (solid vertical line) but is heavily skewed, with the major mode –
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the most probable estimate of the inflation impact – lying meaningfully to the
right of the true impact in the theoretical model. The kernel density estimate
further highlights the heavy tails and also shows a nontrivial range of values
with no probability mass and a positive minor mode.

As is well known from the literature on weak instruments, the potential for
nonstandard behavior as in Figure 1 is a general feature of ratio-based estima-
tors (see, e.g., Nelson and Startz 1990). In the VAR model, the IRF estimates
are linear combinations of the OLS coefficients from regressing the reduced
form VAR residuals on the instrument, divided by the coefficient correspond-
ing to a chosen scaling variable. The nonstandard behaviors result from two
features of such ratio estimators in finite samples: (1) sampling uncertainty
in the denominator and (2) nonzero correlation between the numerator and
the denominator. Estimators of the denominator with positive density near
zero induce heavy tails in the ratio distribution, while a nonzero correlation
between the numerator and the denominator creates endogeneity problems by
shifting the distribution of the ratio away from its population value.

The potential for weak instrument problems in IRF estimators is not spe-
cific to the use of a VAR or the external instrument-based identification ap-
proach, but exists for a broad range of widely-used IRF estimators. In IV-
based LPs, for example, the IRF estimates are coefficients from regressing
various leads of an endogenous variable on the instrument, scaled by the co-
efficient in the regression for the scaling variable.1 In a VAR model with
an internal instrument– which is a VAR expanded to include the instrument
and Cholesky identification – the IRFs are also ratio-based whenever the re-
sponses are normalized by the impact on a variable other than the instrument.
While the explicit use of instruments for IRF identification is now common
in macroeconomic applications, many other existing approaches to IRF iden-
tification ultimately have an instrumental variables interpretation, and are
therefore implicitly based on ratios of sample estimates as well (Hausman and
Taylor 1983; Shapiro and Watson 1988).

Clearly, when judging empirical results based on any of these ratio-based
IRF estimators in small samples, it is important to consider their potentially
nonstandard properties.

1The LP version of Figure 1 is provided in Appendix Figure A.1.
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1.2 Addressing Weak Instrument Bias in IRFs

The primary focus of this paper is the impact of weak identification on the
bias in IRF point estimates.2 We also focus exclusively on the just-identified
case, in which the dynamic responses to a single economic shock are identified
with a single instrument. To obtain tractable analytical approximations to
the finite-sample behavior of ratio-based IRF estimators, we follow the local-
to-zero asymptotic framework of Staiger and Stock (1997). This framework
assumes that the first-stage parameter – determining the instrument’s signal
strength for the endogenous scaling variable – goes to zero at the rate T−1/2

as the sample size T increases. As a consequence, both the numerator and
the denominator in the ratio of the instrumental variable IRF estimator re-
main random variables even as T goes to infinity, as opposed to converging to
their true population values as under conventional asymptotics with a fixed
first-stage parameter. Assuming joint normality of the numerator and de-
nominator based on standard central limit theorem arguments, we derive the
density of the ratio. This density is well established when the numerator is
a scalar (Fieller 1932; Marsaglia 1965; Hinkley 1969); it has been utilized to
examine the finite-sample behavior of the single-equation IV estimator under
just identification by Mariano and McDonald (1979) and Nelson and Startz
(1990), among others. The IRF estimators studied in this paper are (linear
transformations of) multiple-equation IV estimators, and therefore depend on
ratios with vector-valued numerators. Accordingly, we extend the existing dis-
tribution theory to multivariate ratios of normal variables, in line with recent
independent work by Yang and Gui (2023).

As in the just-identified univariate case, the joint distribution of the IRF
coefficients is heavy-tailed and does not possess a finite mean or other positive-
order moments. As a result, the conventional mean-based definition of esti-
mator bias is inapplicable and an alternative measure of central tendency is
required. We propose to assess bias using the (major) mode of the distribu-
tion. For heavy-tailed, asymmetric distributions, the mode provides a natural
measure of noncentrality. It corresponds to the most likely realization of the
estimator and thus serves as an intuitive and representative typical value for

2For IRF inference procedures that are robust to size distortions created by weak instruments, see
Montiel Olea et al. (2021) and Jentsch and Lunsford (2022).
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the point estimates encountered in empirical applications.3

Our primary analytical result is that, asymptotically, the difference be-
tween the modal IRF estimate and the true IRF is proportional to the bias
of the OLS-based IRF estimate. The constant of proportionality is bounded
between zero and one, and – for a given choice of IRF estimator – depends
exclusively on three scalar parameters implied by the underlying DGP: (1) the
concentration parameter (the standardized noncentrality of the denominator);
(2) the endogeneity parameter (the squared canonical correlation between the
numerator and the denominator); and (3) the rank of the IRF (defined as
the minimum of the ratio estimator’s vector dimension and the number of
response horizons). The concentration parameter determines the probability
mass near the true population value, and can be interpreted as a measure of
the effective sample size. The endogeneity parameter determines the shift in
probability mass towards the population OLS estimates. The rank of the IRF
determines the dimensionality of the ratio distribution.

The proportionality result enables direct, simulation-free comparisons of
modal bias across estimators and relative to OLS or other benchmarks that
depend only on these three parameters. We leverage this result to answer
three questions for applied work:

Question 1: Local Projections or Vector Autoregressions?

Plagborg-Møller and Wolf (2021) show that, under suitable specifications, LPs
and VARs estimate the exact same impulse responses in population and dif-
fer only in their finite-sample behavior. Recent studies of the finite-sample
behavior of LP- and VAR-based IRF estimators have focused mainly on the
bias-variance trade-off in finite samples, and specifically, the tension between
lag truncation bias in VARs and the higher estimation variance inherent in
LPs (Schorfheide 2005; Li et al. 2024; Montiel Olea et al. 2025).4 Our paper
adds a distinct perspective by considering the finite-sample bias arising from
a weak instrument.

3An alternative is to measure bias using the median, as in Angrist and Kolesár (2024) and Lewis and
Mertens (2025). However, the median lacks the analytical tractability of the mode and, in multivariate
settings, does not have a universally accepted definition.

4Others focus on finite-sample inference in LPs vs. VARs , (e.g. Kilian and Kim 2011; Montiel Olea
et al. 2024).
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Under the general conditions of Plagborg-Møller and Wolf (2021), LPs
and VARs share a common estimand, which implies that – in the local-to-zero
framework – they also have the same asymptotic OLS bias. Provided the first-
stage specifications are identical, LP and VAR-based IV IRF estimators also
share the same concentration parameter. Our proportionality result implies
that any difference in the modal IV bias must therefore stem solely from the
endogeneity parameter and the rank of the IRF. We prove analytically that
comparing these two parameters yields an unambiguous ranking: the VAR
bias never exceeds the LP bias, regardless of the norm used to aggregate the
biases across individual IRF coefficients. Moreover, apart from special cases,
the VAR bias is generally smaller than the bias in the corresponding LP. In
practice, this implies that applied researchers primarily concerned with weak
instrument bias should favor VARs over LPs.

We emphasize that the weak dominance of VARs in terms of modal IV
bias holds strictly within the local-to-zero asymptotic framework. While this
framework provides analytical tractability by isolating weak identification is-
sues, it abstracts from other finite-sample distortions, such as bias arising
from VAR lag misspecification. As Plagborg-Møller and Wolf (2021) demon-
strate, if the VAR lag length is misspecified and smaller than in the true
DGP, VARs and LPs share the same estimand only for horizons up to the lag
length. Consequently, our result – that VAR asymptotic bias does not exceed
LP asymptotic bias – is guaranteed only for these horizons. Beyond the lag
length, researchers face a trade-off between reduced weak instrument bias and
the risk of lag truncation bias.5

Question 2: How to Test for Weak Instrument Bias in IRFs?

To assess the potential for weak instrument bias in IV-identified IRFs, re-
searchers commonly report results of tests for weak instruments, typically
based on a first-stage F -statistic. In line with suggestions in Montiel Olea et
al. (2021), researchers usually rely on the conventional rule-of-thumb thresh-
old of 10 for the critical value (Staiger and Stock 1997; Stock and Yogo 2005),
or alternatively on the critical values in Montiel Olea and Pflueger (2013).

5High persistence in time series data is another potentially significant source of finite-sample bias that
the local-to-zero asymptotic framework abstracts from. We are not aware of any general ranking of LP
and VAR bias in this context (e.g., Herbst and Johannsen 2024).
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These testing procedures are ill-suited for most IRF applications for two
reasons. First, existing weak instrument tests are for specifications with a
single outcome variable, while IRF analyses typically aim to estimate dynamic
responses over multiple horizons. When using LPs, one can test each horizon
separately. But in many cases, a more appropriate approach is to treat the
IRF as a single causal estimand and combine the bias across all horizons of
interest to conduct a joint test. Moreover, for VARs, the existing tests are
only applicable for the impact horizon, but cannot be applied to detect bias
at other horizons.

Second, the vast majority of instrumental variable IRF applications are just
identified, with responses to a single shock estimated using a single instrument.
In such settings, the ratio estimator lacks a finite mean. Because standard
weak instrument tests are predicated on mean bias, they are theoretically
invalid for just-identified models, as also made clear by Stock and Yogo (2005).

To address these shortcomings of existing tests in the context of IRF es-
timation, we describe a simple novel test based on the usual first-stage F -
statistic.6 The test’s null hypothesis is analogous to that of Montiel Olea and
Pflueger (2013): the IV bias relative to the bias in the most-adverse scenario
of perfect endogeneity and an irrelevant instrument exceeds a user-specified
tolerance level, τ . Without any restrictions on the underlying DGP, the test’s
null hypothesis is also analogous to that of Stock and Yogo (2005): the IV
bias relative to the OLS bias exceeds tolerance τ . The only difference relative
to both existing tests is that the bias criterion considers the modal IV bias
rather than the mean IV bias. Because of the proportionality of the mode
to the asymptotic bias of OLS, the critical value for the test is remarkably
straightforward to obtain and – unlike the mean-based test for over-identified
models in Stock and Yogo (2005) – does not require numerical simulations.
Table 1 in Section 4.2 provides critical values for conventional choices of the
tolerance level, τ , the significance level, α, and a range of values for the rank of

6In unpublished work, Lunsford (2016) proposes a weak instrument test for just-identified instrumental
variable VARs based on the bias in the contemporaneous impact coefficients. As in Stock and Yogo
(2005), critical values controlling the mean bias are obtained from Monte Carlo simulations. Because
the distribution lacks a mean, we regard the simulated critical values as unreliable. In addition, the test
is restricted to impact responses and does not extend to LPs. Angelini et al. (2024) propose a weak
instrument test for VAR IRFs identified indirectly by instruments for all non-targeted shocks. While
appealing, their test is not applicable to the vast majority of applications of IV-based IRF estimators.
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the IRF.7 We also provide a bootstrap refinement for obtaining critical values,
a constrained test that incorporates ex-ante restrictions on structural parame-
ters, and extensions to accommodate heteroskedasticity and serial correlation.

Question 3: Is Weak IV Bias a Concern in IRF Applications?

We evaluate concerns about weak instrument bias in four VAR studies em-
ploying instrumental variable IRF estimators spanning a range of different
applications (monetary policy, oil supply, uncertainty, and tax policy shocks).
While all four studies yield F -statistics exceeding the conventional rule-of-
thumb of 10 – and most exceed the more stringent threshold in Montiel Olea
and Pflueger (2013) – our test frequently fails to reject the null hypothesis of
weak instruments, so weak instrument bias often remains a concern.

As is the case in the existing single-equation tests, our baseline test is
designed to protect against the bias under the worst-case scenario for the true
values of the unknown structural parameters. In our setting, this worst-case
DGP always features arbitrarily large dynamic causal effects and a vanishingly
small variance contribution of the targeted shock. Our recommendation to
practitioners is to look for plausible restrictions on the structural parameters
to restrict the set of admissible DGPs to exclude such extreme scenarios.

Across the four applications, we evaluate the minimum required variance
contribution of the targeted shock to assess the degree of restrictiveness re-
quired to reject the null of a weak instrument. In many cases, this null can
be rejected either without restrictions, or else with reasonably small minimum
variance requirements. One exception is the identification of monetary policy
shocks via a high-frequency instrument, following Gertler and Karadi (2015).
Within their specific empirical framework, rejection requires assuming that
endogeneity bias is small from the outset, indicating that the high-frequency
instrument provides limited incremental value for the reliable identification of
monetary policy shocks.

7For the practical determination of the rank of the IRF in VARs and LPs, see Section 2.3.
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2 Estimating IRFs with an Instrument: Analytical Results

2.1 Modeling Framework

The object of interest is the vector of impulse responses δ ∈ RH . To nest
different IRF estimators (VARs and LPs), we express δ as a general linear
combination of another parameter vector, β ∈ RN :

δ = θ +Θβ,(1)

where θ ∈ RH and Θ ∈ RH×N and rank(Θ) = min{H,N}. The parameters in
β arise from a system of N simultaneous structural equations:

∀t : yt = βYt + ut, E[ut] = 0,(2)

where yt ∈ RN is a vector of N outcome variables and Yt ∈ R is correlated
with the structural errors ut. An instrumental variable zt ∈ R satisfies the
exogeneity condition ∀t : E[ztut] = 0.

When H = 1 and δ = β, the above framework reduces to the standard
just-identified single-equation IV model. The general modeling framework is
an N×1 system of equations identified using the same single instrumental vari-
able. While the framework’s application is not restricted to impulse response
estimation, several widely used IRF estimators fit into this setting:

• LP-IV: Consider (lag-augmented) local projections of xy
t at horizons

h = 0, . . . , H − 1 on xY
t with predetermined controls Xt−1:

xy
t+h = βhx

Y
t + γhXt−1 + uh,t ,(3)

where zt instruments for xY
t to identify βh. Here, Yt is the residual from

projecting xY
t on Xt−1; yt is the H×1 vector of residuals from projecting

xy
t+h on Xt−1; and ut stacks the uh,t terms. The vector β contains the H

impulse response coefficients, so δ = β and N = H, θ = 0 and Θ = IH .

• SVAR-IV (external): Let xy
t contain K − 1 variables and consider
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xt = [xY
t , xy′

t ]
′ ∈ RK with the structural VAR(p) representation

xt =
∑

j=1,...,p

Ajxt−j + et, et = Dϵt, D =

[
dY d′Y y

βdY Dy

]
,(4)

where et = [eYt , ey′t ]
′ are one-step-ahead forecast errors, ϵt are the

structural shocks, and D ∈ RK×K is the impact matrix. Define Γ =[
IKp : A′ : (A2)′ : . . . : (AH−1)′

]
where A is the companion ma-

trix, and let en be the n-th column of IKp. Defining

θ′ = [1 : 01×Kp−1] Γ (IH ⊗ en) ,(5)

Θ′ =
[
0K−1×1 : IK−1 : 0K−1×K(p−1)

]
Γ (IH ⊗ en) ,

δ = θ + Θβ contains the first H impulse responses of the n-th variable
to the first structural shock, normalized to a unit effect on xY

t . In appli-
cations, zt is typically an external measure or proxy for the unobserved
structural shock (external instrument or Proxy SVAR). In this setup,
Yt = eYt , yt = eyt , N = K − 1 and β is the ratio of the contemporaneous
impact of the identified shock on xy

t to that on xY
t .

• SVAR-IV (internal): An internal-instrument SVAR augments the
VAR in (4) to x̃t = [z̃t, xY

t , xy′
t ]

′ ∈ RK̃ with K̃ = K + 1 and applies
a recursive identification scheme. In this approach, Yt and yt are the
residuals in the projections of xY

t and xy
t on x̃t−1, . . . , x̃t−p, and the in-

strument zt is the residual in the projection of z̃t on x̃t−1, . . . , x̃t−p. The
definitions of β, θ, and Θ above can be easily extended to the augmented
VAR, and N = K̃ − 1 = K. Alternative recursive orderings are possible;
as long as the normalizing variable xY

t differs from the internal instrument
z̃t, the model above applies.

The general formulation in (1)-(2) highlights the fundamental distinction be-
tween LPs and VARs. In the LP framework, the H impulse response coeffi-
cients are treated as direct parameters within a system of equations for the
leads of the outcome variable. Conversely, in VARs, these coefficients are de-
rived from the underlying autoregressive parameters, A1, . . . , Ap, and the K−1

contemporaneous impact parameters, β, which govern the dynamics of K en-
dogenous variables. Consequently, because LP-IV and SVAR-IV estimators
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rely on distinct structural systems, their finite-sample properties diverge.
Unless stated otherwise, we continue to interpret δ as containing the first H

impulse responses of a single variable for clarity. However, stacking responses
of multiple endogenous variables, selecting arbitrary horizon subsets, or ana-
lyzing derived objects—such as cumulative, weighted, or discounted impulse
responses—can be handled by suitably redefining xy

t , θ, and Θ.
To ensure analytical tractability, we focus exclusively on the finite-sample

challenges in estimating β and rely otherwise on asymptotic approximations.
Accordingly, we treat the auxiliary parameters – the γh’s in LPs and Aj’s
in VARs – as fixed in the analytical derivations. This simplification is justi-
fied asymptotically provided that consistent estimators are available for these
auxiliary parameters. We state this high-level assumption explicitly as follows:

Assumption 1. In LPs, a consistent estimator γ̂h
p→ γh is available for

h = 0, . . . , H − 1. In VARs, a consistent estimator Âj
p→ Aj is available

for j = 1, . . . , p.

In VARs, this assumption and the continuous mapping theorem guarantee
that θ and Θ are also consistently estimated. Unless mentioned otherwise,
the constructed terms yt, Yt, and zt, as well as the parameters θ and Θ, are
henceforth treated as known.

2.2 The Instrumental Variable IRF Estimator

Consider the first-stage equation

∀t : Yt = Πzt + wt, E[wt] = 0, E[ztwt] = 0,(6)

where Π is the scalar first-stage parameter. Without loss of generality, we let
E[zt] = 0 and E[z2t ] = 1. Substituting (6) in (2) yields the reduced form

yt = βΠzt + vt,(7)

where vt = βwt + ut such that E[vt] = 0 for all t.
Let y ∈ RT×N and Y, z ∈ RT collect a sample of T observations of the vari-

ables yt, Yt and zt for t = 1, ..., T . Let Z = z(z′z/T )−
1
2 such that Z ′Z/T = 1.

With this normalization, the OLS estimators of the scalar first-stage parame-
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ter Π and the N × 1 reduced form parameters Πβ are, respectively

Π̂ = Y ′Z/T, Π̂β = y′Z/T.(8)

The IV estimator of the impulse response vector δ is

δ̂IV = θ +Θβ̂IV , where β̂IV = y′Z/(Y ′Z) = Π̂β/Π̂.(9)

The latter is simply the vector of OLS estimates of the reduced-form param-
eters in (7) divided by the scalar OLS estimate of the first-stage parameter
in (6). Below, we will regularly compare the IV estimator, δ̂IV , to the OLS
estimator, δ̂OLS = θ +Θβ̂OLS, which is the IRF implied by the OLS estimate
β̂OLS = y′Y/(Y ′Y ). In a VAR, δ̂OLS also coincides with the IRFs to a unit in-
novation in the normalizing variable obtained with a lower triangular recursive
identification scheme and the normalizing variable ordered first (Montiel Olea
et al. 2021; Plagborg-Møller and Wolf 2021).

Let w = Y − ZΠ and u = y − Y β′. Since w′Z/T
p→ E[ztwt] = 0, under

standard (strong-instrument) asymptotics it follows that Π̂ is consistent for Π,
i.e. Π̂

p→ Π. Under exogeneity of the instrument, u′Z/T
p→ E[ztut] = 0, such

that Π̂β
p→ Πβ. Assuming the instrument is relevant (Π ̸= 0), then β̂IV

p→ β,
and consequently δ̂IV

p→ δ. In other words, as T increases, δ̂IV converges to
the true value δ, providing the asymptotic justification for using the IV-based
IRF estimator to identify causal effects.

2.3 The IRF Estimator with a Weak Instrument

As the illustrative example in Figure 1 shows, the behavior of the IRF es-
timator, δ̂IV , can be highly nonstandard in finite samples because of weak
identification. Following Staiger and Stock (1997), we consider an asymptotic
approximation of the finite-sample distribution of δ̂IV with a weak instrument.
Specifically, we replace the first-stage equation in (6) with

Yt = ΠT zt + wt,(10)

where

Assumption 2. ΠT = c/
√
T , where c is a fixed scalar constant.

13



Under this assumption, the first-stage coefficient is local to zero. This ensures
that sampling uncertainty remains significant relative to ΠT even in the limit
(T → ∞), effectively embedding finite-sample concerns within an asymptotic
structure. Assumption 2 implies that Π̂

p→ 0 and Π̂β
p→ 0, so that the IV

estimator β̂IV – the ratio of Π̂β to Π̂ – does not converge to β as T → ∞.
Consequently, the IRF estimator, δ̂IV , is now inconsistent.

To characterize the distribution of δ̂IV under local-to-zero asymptotics, we
impose two additional high-level assumptions. First,

Assumption 3.

T−1
[
w u

]′ [
w u

]
p→ Σwu =

[
σ2
w σ′

wu

σwu Σu

]
, Σwu positive definite.

This assumption ensures that the asymptotic covariance matrix of the error
terms is full-rank and requires the system in (2) to be stochastically non-
singular, a conventional assumption in both VAR and LP models. One minor
implication is that, if the outcome variable of interest is the normalizing vari-
able itself, the impact horizon must be excluded from δ because it introduces
an identity in (2).8

The second additional high-level assumption is that a central limit theorem
applies for the first-stage and reduced form regression scores,

Assumption 4. Let w = Y − ZΠ and v = wβ′ + u; then

T− 1
2

[
w′Z

v′Z

]
d→

[
η1

η2

]
∼ N

(
0(N+1)×1,Σwv

)
,

where T−1
[
w v

]′ [
w v

]
p→ Σwv =

[
σ2
w σ′

wv

σwv Σv

]
, Σv = Σu + ββ′σ2

w + σwuβ
′ +

βσ′
wu and σwv = σ2

wβ + σwu.

Assumption 3 guarantees that the covariance matrix Σwv is positive definite.
Besides asymptotic normality, Assumption 4 also imposes conditional ho-
moskedasticity and serially uncorrelated regression scores (CHSU). The CHSU
assumption implies that Σwv coincides with the asymptotic covariance matrix

8Assumption 3 also prevents setting β equal to δ in VARs by redefining yt as θYt + Θyt, since Σwu

would be singular whenever H > N = K − 1.

14



of the OLS estimates Π̂ and Π̂β. In Section 4.3.3 below, we relax the CHSU
assumption and discuss its implications.

Defining ν1 = c+ η1 and ν2 = η2 − βη1, Assumptions 2-4 imply that

β̂IV − β
d→ ν2

ν1
,

[
ν1

ν2

]
∼ N

([
c

0N×1

]
,Σwu

)
(11)

In words, the bias β̂IV − β converges to a random vector that is a quotient of
normally distributed variables, where the numerator ν2 is an N ×1 vector and
the denominator ν1 is a scalar.

Two scalar parameters are key for the shape of the ratio distribution:

µ2 = c2/σ2
w ≥ 0, 0 ≤ ρ2 = σ′

wuΣ
−1
u σwu/σ

2
w < 1 .(12)

The first parameter, µ2, is the concentration parameter, which governs the
extent to which probability mass is concentrated near the origin. The second
parameter, ρ2, is the endogeneity parameter, which is the squared canonical
correlation between w and u, also equal to the asymptotic R2 from regressing
w on u. If the true model is an SVAR as in (4), 1 − ρ2 also measures the
contribution of the identified shock to the variance of Y . The endogeneity
parameter governs the extent to which the IV estimator is pulled toward the
asymptotic OLS bias, with larger values implying greater endogeneity bias.
Positive definiteness of Σwu (Assumption 3) ensures that 0 ≤ ρ2 < 1.

We first consider the special case of an irrelevant instrument, µ2 = 0. In
this case, the denominator of β̂IV is centered at zero, and the asymptotic
distribution is a multivariate t-distribution with one degree of freedom or,
equivalently, the multivariate Cauchy distribution.

Lemma 1. When µ2 = 0,

β̂IV − β
d→ ν2

ν1
∼ C

(
σwu

σ2
w

,
Σu|w

σ2
w

)
,

where
Σu|w = Σu −

σwuσ
′
wu

σ2
w

= Σv −
σwvσ

′
wv

σ2
w

,
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and C(m,Σ) denotes the multivariate Cauchy distribution with density

φC (b,m,Σ) =
Γ
(
N+1
2

)
π(N+1)/2(det(Σ))1/2

[
1 + (b−m)′Σ−1(b−m)

]−N+1
2 ,

where Γ(s) =
∫∞
0

qs−1e−q dq is the gamma function.

The location vector, σwu/σ
2
w, and the scale matrix, Σu|w/σ

2
w, match the mean

and covariance of the asymptotic distribution of β̂OLS under the local-to-zero
assumption.9 Thus, with an irrelevant instrument, the asymptotic distribution
of β̂IV is centered at the asymptotic OLS value, β + σwu/σ

2
w, where σwu/σ

2
w is

the OLS bias. Owing to the heavy tails of the Cauchy distribution, the mean
and all positive-order moments are undefined.

The next result extends Lemma 1 to the general case, µ2 ≥ 0.

Proposition 1. Under Assumptions 1-4, β̂IV − β
d→ ν2/ν1 with density

φ(b) = φC
(
b, σwu/σ

2
w,Σu|w/σ

2
w

)
· h
(
ζ(b)

)
,

where

ζ(b) =
|µ|

1− ρ2
(σ′

wuΣ
−1
u b− 1)

(
1 + (b− σwu/σ

2
w)

′(Σu|w/σ
2
w)

−1(b− σwu/σ
2
w)
)− 1

2 ;

h(t) =
e

1
2

(
t2− µ2

1−ρ2

)
Γ
(
N+1
2

) ·


∑N

j=0,2,4,...

(
N
j

)
(t/

√
2)N−jΓ

(
j+1
2

)
if Neven;

−
∑N

j=0

(
N
j

)
(−|t|/

√
2)N−jγ

(
j+1
2
, t

2

2

)
+
∑N

j=1,3,5,...

(
N
j

)
(t/

√
2)N−jΓ

(
j+1
2

)
if Nodd;

Γ(s) =
∫∞
0

qs−1e−q dq is the gamma function and γ(s, v) =
∫ v

0
qs−1e−q dq is the

lower incomplete gamma function.

Proof. See Appendix B.1.

Proposition 1 nests Lemma 1 as a special case when µ2 = 0.10 When µ2 > 0,
the first-stage contains some signal, which changes the shape of the distribu-
tion through the multiplicative factor h(ζ(b)) in the density. The concentration
parameter, µ2, governs the extent to which probability mass is concentrated on
b = 0, while the endogeneity parameter ρ2 determines how far the distribution

9Under Assumptions 1–3 and a central limit theorem,
√
T (β̂OLS − β)

d→ N
(
σwu/σ

2
w, Σu|w/σ

2
w

)
.

10When µ2 = 0, ζ(b) = 0 and h(ζ(b)) = 1 for all b ∈ RN .
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Figure 2: Examples of φ(b) for N = 2

Notes: Contours of φ(b) for various values of µ2 and ρ2. All panels are for σ2
w = 1,Σu = I2,

and a 45 degree angle of σwu. Circles (crosses) denote major (minor) modes. The distribution
for µ2 = 10 and ρ2 = 0.9 in the lower left and right panels has a minor mode to the northeast
that lies outside of the ranges plotted.

is shifted toward the OLS bias, as illustrated for N = 2 in Figure 2. At b = 0,
the exponential term in h(ζ(b)) remains constant while the polynomial terms
grow with µ2, concentrating more probability mass at the truth. For b ̸= 0, the
exponential term declines with µ2, reducing probability mass away from b = 0.
Higher values of ρ2, on the other hand, shift mass in a direction determined by
σwu, that is, towards the OLS bias. Importantly, even for µ2 > 0, the distri-
bution remains heavy-tailed: since lim∥b∥→∞ h(ζ(b)) = h

(
|µρ|/

√
1− ρ2

)
> 0,
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Figure 3: Modality Regions of φ(b).

Notes: φ(b) has one mode below the lines shown, and two above.

the tails decay at the same rate as a Cauchy distribution, implying that the
mean and all positive-order moments are undefined.

When µ2 = 0, the unique mode of φ(b) coincides with the asymptotic
OLS bias σwu/σ

2
w (Lemma 1). For µ2 > 0, the distribution is not necessarily

unimodal, but can exhibit bimodality depending on the values of µ2 and ρ2, as
illustrated in the lower right panel of Figure 2. Figure 3 displays the modality
regions as a function of µ2 and ρ2 for various dimensions N . Figures 2 and 3
illustrate that the qualitative properties of φ(b) for arbitrary N remain similar
to the N = 1 case discussed by Nelson and Startz (1990).

The following proposition characterizes the major mode of φ(b):

Proposition 2. The major mode of φ(b) in Proposition 1 is

b+IV = argmaxφ(b) =
σwu/σ

2
w

1 + s+N
,

where s+N = (1 − ρ2)(k+ − 1) ≥ 0, k+ = limn→∞ kn, and {kn} is generated by
the recurrence

kn+1 =
1

2

(
g(r(kn)) +

√
g(r(kn))

2 +
4ρ2

1− ρ2
(g(r(kn))− 1)

)
,

r(k) = − k |µ|(1− ρ2)−1/2√
k2 + ρ2/(1− ρ2)

, g(t) = 1 +
1

N + 1

dh(t)

dt

t

h(t)
,
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with initial condition r(k−1) = |µ|(1 − ρ2)−1/2. For µ2 > 0, 1/(1 + s+N) is
strictly decreasing in ρ2 and µ2 and strictly increasing in N = dim(β).

Proof. See Appendix B.2.

Proposition 2 shows that, for T → ∞, the most probable value of β̂IV − β

is proportional to the asymptotic OLS bias, σwu/σ
2
w. The proportionality

constant, 1/(1 + s+N), which lies between zero and one, decreases with the
concentration parameter µ2 and the endogeneity parameter ρ2 and increases
with the dimension N = dim(β), but is otherwise independent of other model
parameters. Although there is no closed-form expression for the proportional-
ity constant, Proposition 2 provides a simple and efficient iterative algorithm
that converges to the global maximum of φ(b) with arbitrary accuracy.

The next proposition establishes how the asymptotic distribution of β̂IV

translates to that of the impulse response estimator δ̂IV .

Proposition 3. Define the rank of the IRF, R = rank(Θ) = min{H,N}.
Under Assumptions 1-4, δ̂IV − δ

d→ Θν2/ν1 with density

φδ(d) =

φ̃(d), if R = H ≤ N ;

(det(Θ′Θ))−1/2 φ
(
Θ†d

)
, if R = N < H;

where φδ(d) is defined with respect to the Hausdorff measure HN for HN -
almost every d ∈ {Θb : b ∈ RN} when R = N < H, Θ† = (Θ′Θ)−1Θ′ is the
Moore-Penrose inverse, and φ̃(·) is the pdf in Proposition 1 after replacing N ,
Σwu, and ρ2 with, respectively,

R, Σ̃wu =

[
σ2
w σ′

wuΘ
′

Θσwu ΘΣuΘ
′

]
, ρ̃2 = σ′

wuΘ
′(ΘΣuΘ

′)−1Θσwu/σ
2
w.

The major mode of φδ(d) is

d+IV = argmaxφδ(d) =

dOLS/(1 + s̃+R) if R = H < N ;

Θb+IV = dOLS/(1 + s+R) if R = N ;

where dOLS = Θσwu/σ
2
w, s+R is defined as in Proposition 2 with N replaced by

R, and s̃+R is defined as in Proposition 2 with N and ρ2 replaced by R and ρ̃2,
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respectively.

Proof. See Appendix B.3.

In the LP case, δ̂IV = β̂IV , so Propositions 1 and 2 apply directly, providing
both the distribution and the major mode of δ̂IV under local-to-zero asymp-
totics. When δ̂IV = θ + Θβ̂IV , as in VAR applications, the distribution addi-
tionally depends on Θ as described in Proposition 3. Importantly, the propor-
tionality result continues to hold for δ̂IV : the modal IV bias is proportional
to dOLS, which is the IRF bias implied by the population value of the OLS
estimate of β, given by β + σwu/σ

2
w. As an illustration, the analytical mode

and distribution for the New Keynesian example of Section 1.1 are depicted
in Figure 1.

The mode of the asymptotic distribution of δ̂IV depends on R, the rank of
IRF. The following examples illustrate the practical determination of R in LP
and VAR settings.

• LP. For impulse responses estimated via LP-IV, the rank of the impulse
response equals the number of elements in δ̂IV . For the response of a
single variable over H horizons, R = H. For impulse responses of multiple
outcome variables, R equals the number of variables multiplied by H.

• VAR. In internal or external SVAR-IV, the rank of the impulse response
is given by R = min{H,K − 1}, where K is the total number of endoge-
nous variables in the VAR, regardless of the lag length of the VAR. For
example, in a four-variable VAR with impulse responses over six hori-
zons, R = min{6, 4− 1} = 3. In a ten-variable VAR with four horizons,
R = min{4, 10 − 1} = 4. The rank, R, remains unchanged even when
stacking the responses of multiple endogenous variables.

Thus, imposing VAR restrictions on the dynamics reduces the rank of IRF,
R, from H to min{H,K − 1}, where K denotes the number of endogenous
variables in the VAR. Unlike in LPs, R does not scale with the total number
of impulse response coefficients but is bounded by the number of endogenous
variables in the VAR system.

The proportionality of the mode to the asymptotic OLS bias in Proposition
3 is central to the results in the remainder of this paper, as it facilitates
analytical comparisons of modal IV bias across LP and VAR estimators, as
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well as assessments of bias relative to the benchmarks in the criteria of first-
stage tests like that of Stock and Yogo (2005) or Montiel Olea and Pflueger
(2013).

3 Comparing weak instrument Bias in LPs and VARs

An important practical question for researchers is whether to use VAR or LP
models for IRF estimation. To help guide that choice, the following proposition
establishes a general ranking of the modal IV bias in just-identified VAR- and
LP-based IRF estimators in the local-to-zero asymptotic framework:

Proposition 4. Let δ̂LPIV and δ̂V AR
IV be just-identified instrumental variable

IRF estimators of δ ∈ RH in LP and VAR models, respectively. Suppose
Assumptions 1-4 hold, and that the LP and VAR models share the same first-
stage equation and OLS impulse response estimand. Then, for any norm || · ||,

(i) ||d+LP
IV || ≥ ||d+V AR

IV ||;

(ii) ||d+LP
IV || > ||d+V AR

IV || if H ≥ K, ρ2V AR > 0, and µ2
V AR > 0;

(iii) ||d+LP
IV || > ||d+V AR

IV || if ρ2V AR > ρ2LP , and µ2
V AR > 0;

where K is the number of endogenous variables in the VAR, and d+LP
IV and

d+V AR
IV are defined as in Proposition 3.

Proof. See Appendix B.4.

Proposition 4 establishes that – under the stated assumptions – the modal IV
bias in the VAR asymptotically never exceeds the modal IV bias in LPs for
all conventional definitions of the magnitude of a vector. Apart from trivial
cases (an irrelevant instrument or no OLS endogeneity bias), the VAR bias is
strictly smaller whenever the number of impulse response coefficients H equals
or exceeds the number of endogenous variables K included in the VAR. The
VAR bias is also strictly smaller whenever its endogeneity parameter, ρ2V AR,
is strictly larger than the endogeneity parameter in the LP system, ρ2LP –
regardless of the number of impulse response coefficients.

Plagborg-Møller and Wolf (2021) show that, under suitable specifications,
LP and VAR models target identical impulse response estimands under quite
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general conditions.11 Given Assumptions 1-4, the OLS-based IRF estimators,
δ̂LPOLS and δ̂V AR

OLS , are consistent; consequently, both converge to the common
estimand and display the same OLS bias, dOLS, as T → ∞ under those con-
ditions. The IV-based IRF estimators, δ̂LPIV and δ̂V AR

IV , in contrast, are not
consistent in the local-to-zero framework. They converge in distribution to
random vectors with different densities, as they are based on distinct sys-
tems of structural equations. Including the same controls in the LP and VAR
first-stage equations ensures that the concentration parameters are identical
in both densities, µ2

LP = µ2
V AR = µ2. When dOLS and µ2 are identical for

both densities, Proposition 3 implies that comparisons of the modal IV bias
can be based solely on comparisons of the rank of the IRF, R, and the en-
dogeneity parameter, ρ2. The rankings in Proposition 4 follow from the fact
that RLP ≥ RV AR, with strict inequality in (ii), and ρ2V AR ≥ ρ2LP , with strict
inequality in (iii), and the fact that the constant of proportionality in the
mode is strictly decreasing in ρ2 and strictly increasing in R for µ2 > 0 (see
Proposition 2).

The determination of R in VAR and LP models, and the fact that RLP ≥
RV AR, was already discussed in the previous section. The proof that ρ2V AR ≥
ρ2LP is in Appendix B.4. Intuitively, ρ2 measures the explanatory power of the
structural errors u for the first-stage residual w. By assumption, the first-stage
residual is identical in LPs and the VAR, and also asymptotically equal to Y

in the local-to-zero framework. The explanatory power of the structural errors
for Y in a VAR model (contemporaneous errors across all of the VAR variables
other than Y ) is always at least as large than that of the structural errors in
an LP system (cross-horizon errors for only the subset of variables of interest).
Consequently, the endogeneity parameter is weakly larger in the VAR. That
the VAR has smaller modal IV bias because its endogeneity parameter is
larger sounds counterintuitive. Note, however, that endogeneity affects both
the proportionality constant and the OLS bias in the expression for the mode.
The latter is by assumption identical in the comparison, and the smaller VAR
bias arises because the proportionality constant decreases with ρ2.

Proposition 4 provides a broad justification to prefer VARs over LPs in
11In recent work, Ludwig (2024) establishes a finite sample equivalence between LPs and VARs by

expressing LPs as combinations of equal and higher order VARs and VARs as combinations of equal and
lower order LPs. In our setting, this results in equal structural systems and identical IRF estimators.
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applications where weak instrument bias is the dominant concern for IRF
estimation. It is important to note, however, that the advantage of VARs in
terms of modal IV bias is derived strictly within the local-to-zero asymptotic
framework. This framework focuses on the weak instrument problem, but
ignores all other sources of finite-sample bias. Specifically, Plagborg-Møller
and Wolf (2021) show that when the VAR lag length is insufficient, VAR
and LP estimands align only up to that specific horizon. In that case, our
finding that VARs exhibit weakly lower modal IV bias is only asymptotically
guaranteed for horizons within the lag length of the VAR. At longer horizons,
a trade-off arises between mitigating weak instrument bias and potentially
incurring truncation bias.

4 Testing for Weak Instrument Bias in IRF Estimators

Another important practical question for researchers is how to assess the po-
tential for weak instrument bias in IRF applications. Researchers currently
mostly default to existing tests for single-equation models based on a first-stage
F -statistic (Stock and Yogo 2005; Montiel Olea and Pflueger 2013; Lewis and
Mertens 2025). However, these tests are only suitable for assessing weak in-
strument bias in individual IRF coefficients. Moreover, in VARs they are only
applicable to assess bias in the impact coefficients, which are typically not the
(only) main objects of interest. A second problem is that single-equation tests
usually target the mean of the local-to-zero asymptotic distribution. Most
applications of instrumental-variable IRF estimators in the literature employ
just-identified models, where the mean of the distribution does not exist.12

Next, we propose a test targeting the modal IV bias across multiple estimates
jointly, making it better suited for assessing weak instrument bias in IRF
applications.

12Stock and Yogo (2005) only tabulate critical values for models with degrees of overidentification of
two or more. Researchers often resort to a rule-of-thumb critical value of 10 for the first-stage F -statistic,
or to the critical values in Montiel Olea and Pflueger (2013) controlling the mean bias in a second-order
(Nagar) approximation, a metric that in just-identified models lacks a clear relationship to the actual
(infinite) bias it aims to approximate. The test in Lewis and Mertens (2025) targets the median in
just-identified models, but the median has no universally accepted definition in multivariate settings.
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4.1 Bias Criterion for the Test

As in existing single-equation tests, the goal is to construct a statistical test
of the null hypothesis that the instrument is weak, with a precise definition of
“weak” in terms of the potential IRF bias under the local-to-zero asymptotic
framework. As discussed above, we consider the bias in terms of the (major)
mode, d+IV . For brevity, we henceforth assume H > R = N . The formulas
that follow also apply to the R = H ≤ N case after substituting s+R and ρ2

with s̃+R and ρ̃2 as in Proposition 3.
The bias criterion for the test is as follows:

Definition 1. The bias criterion for the impulse response estimator δ̂IV is

B =

√
d+′
IVW

†d+IV
1 + d′OLSW

†dOLS

=
|ρ|

1 + s+R
,

where W † is the Moore-Penrose inverse of the asymptotic covariance of the
OLS-implied impulse response, δ̂OLS = θ +Θβ̂OLS, given by

W =

Σ̃u|w/σ
2
w; if R = H ≤ N ;

ΘΣu|wΘ
′/σ2

w; if H > R = N ;

and d+IV and s+R are defined as in Proposition 3.

The bias criterion, B, is determined by a quadratic loss in the modal IV bias,
d+′
IVW

†d+IV = ρ2(1 − ρ2)−1(1 + s+R)
−2. The weighting by the Moore-Penrose

inverse of the asymptotic OLS covariance, W †, ensures the criterion remains
invariant to arbitrary re-scalings of the outcome variable, y, or the endogenous
regressor, Y . To constrain the criterion between zero and one, we scale the
quadratic IV loss term. Specifically, we normalize by 1 + d′OLSW

†dOLS =

(1− ρ2)−1 rather than by the quadratic OLS loss term itself, d′OLSW
†dOLS =

ρ2(1 − ρ2)−1. This results in B = |ρ|(1 + s+R)
−1, and since 0 ≤ |ρ| < 1

and s+R ≥ 0, it follows that 0 ≤ B(ρ2, µ2) < 1. The choice of the scaling
factor is driven by the behavior of the ratio with respect to ρ2. As shown
in Proposition 2, the ratio d+′

IVW
†d+IV /(d

′
OLSW

†dOLS) is equal to (1 + s+R)
−1,

which is decreasing in ρ2. Consequently, scaling directly by the OLS loss
would yield a bias criterion that decreases as ρ2 increases and is maximized
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at ρ2 = 0, even though both the IV and OLS bias terms individually are
strictly increasing in ρ2. By scaling by 1 + d′OLSW

†dOLS instead, we ensure
that B is increasing in ρ2 ∈ [0, 1) for all but a small range of concentration
parameter values. Specifically, B increases in ρ2 for µ2 ∈ [µ2,∞)∪{0}, where

µ2 = 2
(√

1 + (R + 1)2 − (R + 1)
)

> 0.13 The bias criterion, B, depends
only on three parameters: the endogeneity parameter ρ2, the concentration
parameter µ2, and the rank of the IRF, R. Since R is known, we will use the
notation B(ρ2, µ2) whenever it is instructive to highlight the dependence on
the unknown parameters.

The units of the bias criterion can be interpreted in several ways. The bias
criterion approaches its upper bound of unity when the instrument is irrelevant
(µ2 = 0) and as Y becomes perfectly correlated with u (ρ2 → 1). Therefore, as
in Montiel Olea and Pflueger (2013), one possible interpretation of B(ρ2, µ2)

is the bias relative to the most adverse scenario of an irrelevant instrument
and an endogenous regressor that is perfectly correlated with the structural
errors. For ρ2 → 1, the criterion also shares the same interpretation as in
Stock and Yogo (2005), namely as the IV bias relative to the OLS bias, since
lim
ρ2→1

√
d+′
IVW

†d+IV /(d
′
OLSW

†dOLS) = lim
ρ2→1

B(ρ2, µ2)/B(ρ2, 0) = lim
ρ2→1

B(ρ2, µ2).

When µ2 = 0, the modal IV and OLS bias coincide, B(ρ2, 0) = |ρ|, such
that the criterion in that case equals the modulus of the canonical correlation
between the endogenous regressor Y and the structural error u as T → ∞.
Therefore, the bias criterion can also be interpreted in terms of the canonical
correlation between the endogenous regressor Y and the structural error u.
For µ2 → ∞, s+ → ∞ and the OLS bias induced by the correlation between
Y and u is fully eliminated by projecting onto the instrument in the first-stage.
The case with 0 < µ2 < ∞ approximates the finite-sample case in which some
correlation between Ŷ = ZΠ̂ and u remains. The value of B(ρ2, µ2) can be
thought of as the extent to which the instrumentation step attenuates the
effect of the correlation between Y and u by regressing y on Ŷ instead of on
Y , in units of the endogeneity parameter.

Although the bias criterion in Definition 1 shares the intuitive interpreta-
tion of Montiel Olea and Pflueger (2013) – and, for ρ2 → 1, Stock and Yogo
(2005) – it is ill-suited for comparing bias across different estimators. While

13For µ2 ∈ (0, µ2), the maximum of B over ρ2 ∈ [0, 1) is achieved for a value of ρ2 close to, but strictly
below, one.
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it is always the case that ∥d+V AR
IV ∥ ≤ ∥d+LP

IV ∥, the ranking of B between VARs
and LPs is ambiguous because ρ2V AR ≥ ρ2LP but RLP ≥ RV AR. This ambiguity
does not contradict Proposition 4. Rather, it reflects that the bias criterion, B,
employs different norms for LPs and VARs based on their distinct structural
systems. Specifically, because the asymptotic OLS covariance in LPs generally
exceeds that in VARs, the IRF bias coefficients are standardized into (weakly)
larger absolute units than in VARs.

4.2 The Weak Instrument Test

In the local-to-zero asymptotic framework, Σwv and the auxiliary parameters
θ and Θ are consistently estimable under Assumptions 1 and 4. In contrast,
Assumption 2 implies that the concentration parameter µ2 and the vector β

are not estimable. Consequently, the true model, defined by the pair {µ2, β},
remains unknown to the econometrician and can be any element of the pa-
rameter space {µ2 ∈ R≥0, β ∈ RN}.

Our objective is a statistical test of the null hypothesis that the true model,
{µ2, β}, belongs to the subset of weakly-identified models. This weak instru-
ment set is the set of all models for which the bias criterion in Definition 1
is greater than or equal to a chosen tolerance level, τ . As discussed above,
the bias criterion, B(ρ2, µ2), depends only on two unknown scalars, µ2 and ρ2.
Using the definition of Σwv in Assumption 4, the endogeneity parameter, ρ2,
can be expressed as

ρ2 =
(σwv/σ

2
w − β)′(Σu|w/σ

2
w)

−1(σwv/σ
2
w − β)

1 + (σwv/σ2
w − β)′(Σu|w/σ2

w)
−1(σwv/σ2

w − β)
,(13)

where Σu|w = Σv − σwvσ
′
wv/σ

2
w is an observed positive definite matrix. This

alternative expression for the endogeneity parameter makes clear that ρ2 de-
pends on the unobserved parameter β and on the observed covariance struc-
ture Σwv. Without any additional restrictions on β, knowledge of Σwv does
not impose any restrictions on the possible values of ρ2 ∈ [0, 1). Therefore, to
determine whether a model belongs to the weak instrument set, it suffices to
consider only the scalars ρ2 and µ2. Accordingly, we can characterize a model
simply by the pair {µ2, ρ2}. This leads to the following definition of the set of
weakly-identified models:

26



Definition 2. The weak instrument set is

Bτ =
{
ρ2 ∈ [0, 1);µ2 ∈ R≥0 : B(ρ2, µ2) ≥ τ

}
.

The next proposition provides a threshold for µ2 that guarantees inclusion in
the weak instrument set but does not depend on ρ2:

Proposition 5. Define m(τ) = (R + 1) (1−τ)2

τ
. For m(τ) ≥ µ2, {µ2, ρ2} ∈ Bτ

if and only if µ2 ≤ m(τ).

Proof. See Appendix B.5.

Proposition (5) implies that – as long as the tolerance level, τ , is not too large –
a test of the null hypothesis that the true model belongs to the weak instrument
set can be based on a test of the null that the concentration parameter, µ2,
does not exceed the threshold value, m(τ). The requirement that m(τ) ≥ µ2 =

2
(√

1 + (R + 1)2 − (R + 1)
)

is not restrictive in practice. The condition is
always satisfied, for example, for τ ≤ 0.5, which well exceeds the level of bias
most researchers consider acceptable in practice.14

Given Proposition 5, the null and alternative hypotheses for the test can
be stated formally as:

H0 : µ2 ≤ m(τ) , H1 : µ2 > m(τ).(14)

The test can be based on the usual F -statistic,

F =
1

σ̂2
w

Y ′ZZ ′Y

T
= T

(
Π̂

σ̂w

)2

,(15)

where σ̂w = (Y − Π̂Z)′(Y − Π̂Z)/T . Under Assumptions 1-4, T
1
2Y ′Z/σw

converges in distribution to a normal distribution with mean c/σw and unit
variance. Since σ̂w

p→ σw, it follows that when µ2 = m(τ),

F
d→ χ2

1(m(τ)),(16)

14The most common choice in existing tests is τ = 0.10. The threshold µ2 is decreasing in R, and
µ2 → 0 for R → ∞, such that the condition can be essentially ignored for large R.
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where χ2
1(m(τ)) denotes the chi-squared distribution with non-centrality m(τ)

and one degree of freedom. The following Proposition states the asymptotic
validity of the test for significance level α:

Proposition 6. Under Assumptions 1-4 and m(τ) ≥ µ2, the weak instrument
test is pointwise asymptotically valid, that is

sup
µ2≤m(τ)

lim
T→∞

Prob (F > C (m(τ), α)) = α,

where C(µ2, α) is the upper α-quantile of χ2
1(µ

2).

Proof. See Appendix B.6.

Table 1 reports critical values for significance levels α = 0.01, 0.05, and 0.10

and bias tolerance levels τ = 0.05, 0.10, and 0.20.15 The null hypothesis of
a weak instrument is rejected whenever the observed F -statistic exceeds the
critical value corresponding to the chosen significance and tolerance levels. For
the common choices α = 0.05 and τ = 0.10, the critical value for an individual
IRF coefficient (R = 1) is 32.1, substantially larger than the widely used rule-
of-thumb value of 10 or the Montiel Olea and Pflueger (2013) critical value of
around 23. Moreover, the critical values increase with the rank of the impulse
response R, which depends on the IRF estimator as described at the end of
Section 2.3. As a result, compared to current testing procedures – which have
the shortcomings mentioned above – the test based on the modal IV bias will
fail to reject more frequently, and therefore often reach different conclusions
regarding the potential for weak instrument bias.

4.3 Extensions

4.3.1 Bootstrap Refinement and Simulations

In finite samples, uncertainty in auxiliary parameters and departures from nor-
mality of the regression scores can distort the size of the weak instrument test,
as the non-central χ2 critical values in Table 1 apply only in the asymptotic

15 Critical values for cases not covered in Table 1 are straightforward to obtain in standard software:
ncx2inv(1−α,1,m(τ)) in Matlab, invnchi2(1,m(τ),1−α) in Stata, or qchisq(1−α,df=1,ncp=m(τ))
in R, where m(τ) = (R + 1)(1 − τ)2/τ . Since lim

R→∞
R−1C (m(τ), α) = (1− τ)2/τ , for large R, a useful

rule-of-thumb is a critical value of R(1− τ)2/τ .
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Table 1: Asy. Critical Values for the weak instrument Test

α = 0.01 α = 0.05 α = 0.10

τ 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20

R 1 69.5 40.3 23.6 58.6 32.1 17.4 53.1 28.2 14.5
2 93.8 52.6 29.4 81.1 43.2 22.5 74.7 38.6 19.2
3 117.1 64.3 34.9 102.9 53.8 27.3 95.6 48.6 23.6
4 139.9 75.5 40.0 124.2 64.1 31.9 116.2 58.5 27.9
5 162.1 86.4 45.0 145.2 74.2 36.3 136.6 68.1 32.1
6 184.1 97.1 49.8 166.0 84.2 40.7 156.8 77.6 36.2
7 205.7 107.7 54.6 186.6 94.0 45.0 176.8 87.1 40.2
8 227.2 118.0 59.2 207.1 103.7 49.2 196.8 96.4 44.2
9 248.4 128.3 63.7 227.4 113.3 53.3 216.6 105.7 48.1
10 269.5 138.4 68.2 247.6 122.9 57.4 236.3 114.9 52.0
11 290.5 148.5 72.6 267.7 132.3 61.5 256.0 124.1 55.9
12 311.3 158.5 77.0 287.7 141.8 65.5 275.6 133.2 59.8
13 332.1 168.4 81.4 307.7 151.1 69.5 295.1 142.3 63.6
14 352.7 178.2 85.6 327.6 160.5 73.5 314.6 151.4 67.4
15 373.3 188.0 89.9 347.4 169.8 77.4 334.0 160.4 71.2
16 393.8 197.7 94.1 367.2 179.0 81.4 353.4 169.4 74.9
17 414.2 207.4 98.3 386.9 188.2 85.3 372.7 178.4 78.7
18 434.5 217.0 102.5 406.6 197.4 89.2 392.1 187.3 82.4
19 454.8 226.6 106.6 426.2 206.6 93.0 411.3 196.3 86.1
20 475.0 236.2 110.8 445.8 215.7 96.9 430.6 205.2 89.9
24 555.5 274.1 127.0 523.8 252.0 112.1 507.3 240.6 104.6
28 635.3 311.6 143.0 601.4 288.0 127.2 583.7 275.8 119.1
32 714.6 348.8 158.8 678.6 323.8 142.1 659.8 310.8 133.6
36 793.5 385.7 174.4 755.6 359.4 156.9 735.7 345.7 147.9
40 872.0 422.3 189.9 832.2 394.8 171.6 811.4 380.5 162.2
48 1028.2 495.0 220.5 985.0 465.1 200.7 962.3 449.6 190.5
60 1260.8 602.9 265.6 1212.9 569.9 243.9 1187.7 552.7 232.7
72 1492.0 709.8 310.1 1439.8 674.0 286.6 1412.3 655.3 274.4
84 1721.9 816.0 354.1 1665.8 777.5 329.0 1636.3 757.4 315.9
96 1950.9 921.5 397.8 1891.2 880.6 371.1 1859.7 859.2 357.2
108 2179.2 1026.6 441.1 2116.1 983.4 412.9 2082.8 960.7 398.3
120 2406.9 1131.2 484.2 2340.5 1085.8 454.6 2305.5 1062.0 439.3

Note: The test rejects the null hypothesis of a weak instrument if the F -statistic in (15)
exceeds the critical value. The critical value is a function of the significance level, α; the
rank of the impulse response R; and the bias tolerance, τ . The critical values shown are
based on the non-central χ2 with non-centrality m(τ) and one degree of freedom.
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limit T → ∞ (Assumptions 1 and 4). For improvements in performance in
finite samples, critical values for the F -statistic can alternatively be obtained
via a bootstrap procedure. Appendix C describes a parametric bootstrap and
presents simulation evidence demonstrating that the test performs well across
a range of DGPs in terms of size and power. The simulation results, which
include several DGPs based on empirical SVAR models from the literature,
show that the performance of the test under the asymptotic χ2

1 critical values
is reasonably good overall, but the bootstrap procedure effectively corrects
remaining small-sample size distortions. The simulations also indicate that
the test has meaningful power.

4.3.2 Testing with Parameter Restrictions

In macroeconomic applications, samples are usually short, and the share of
plausibly exogenous variation in the normalizing variables is often small. In
practice, observed F -statistics are often lower than the threshold of 32.1 for
a single IRF coefficient using τ = 0.10 and α = 0.05. Moreover, the critical
values for joint tests rise with the IRF rank, R, and therefore yield even
larger critical values. In LP models, for example, R equals the number of IRF
coefficients. Rejecting a bias of τ = 0.10 or more at α = 0.05 for an IRF
with 24 monthly horizons requires an F -statistic exceeding 252.0 (R = 24).
Rejecting the same weak instrument null in a four-variable VAR requires an
F -statistic above 53.8 (R = 3), substantially less than the critical value of
252.0 in the LP model, but still larger than F -statistics typically obtained in
empirical macro applications.

Failure to reject the weak instrument null does not imply that the bias
of the true DGP necessarily exceeds the tolerance level. It only indicates
that the bias exceeds the threshold in the worst-case scenario of near-perfect
endogeneity (ρ2 → 1). These worst-case models may represent highly unre-
alistic scenarios in practice, making the weak instrument set in Definition 2
potentially unnecessarily conservative. In fact, to generate the largest pos-
sible bias, the true IRF must always contain at least one coefficient that is
arbitrarily large in absolute value. To see why, consider the formulation of
the endogeneity parameter in (13). The expression shows that ρ2 is increas-
ing in (σwv/σ

2
w − β)′(Σ−1

u|w/σ
2
w)(σwv/σ

2
w − β), which has an upper bound at
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maxeval{Σ−1
u|w/σ

2
w}(σwv/σ

2
w − β)′(σwv/σ

2
w − β). Therefore, achieving ρ2 → 1

requires ∥σwv/σ
2
w − β∥ → ∞, which in turn requires ∥β∥ → ∞. Thus, the

worst-case DGPs that determine the boundary of the weak instrument set
must feature IRF coefficients that are arbitrarily large in absolute value for
an exogenous unit innovation in Yt.

In applied work, researchers may often be comfortable ruling out DGPs
with such extreme dynamic causal effects. Doing so can be done by imposing
restrictions on the unknown structural parameters in β. Depending on the spe-
cific application, these restrictions can be based on theoretical considerations,
additional external information, or simply ex-ante plausibility considerations.
To obtain a constrained weak instrument test with greater power, the restric-
tions must bound the endogeneity parameter ρ2 (or ρ̃2) away from one, i.e.
ρ2 ≤ 1− ε for some ε > 0. In SVAR models, this amounts to imposing a lower
bound on the fraction of the variance of Y – the one-step head forecast error
of the scaling variable – that is explained by the identified structural shock.

To illustrate how parameter restrictions can limit the set of admissible
DGPs and – provided these restrictions indeed hold – achieve greater power,
consider the following simple structural AR(1) model as an example:

xy
t = λxy

t−1 + et, et = δ0Yt + ut, Yt =
µ√
T
Zt + wt(17)

[et, wt, Zt]
i.i.d.∼ N (0, V ), V =

1 r 0

r 1 0

0 0 1

 ,

where the covariance, 0 ≤ r ≤ 1, and autoregressive parameter, λ, are con-
sistently estimable, but the impact coefficient δ0 and first-stage parameter µ

are not. Let λH = [1, λ, . . . , λH−1]′, so the true impulse response vector is
δ = λHδ0. The unobserved endogeneity parameter is ρ2 = (r − δ0)

2/((r −
δ0)

2 + (1 − r2)) and the asymptotic OLS bias is dOLS = λH(r − δ0). The
unconstrained worst-case DGP with ρ2 → 1 requires making |δ0| arbitrarily
large. To rule out such extreme impulse responses, consider imposing box
constraints, δ ≤ δ0 ≤ δ̄, where |δ|, |δ̄| < ∞. With these constraints, ρ2 has the
sharp bound ρ̄2 = m̄/(m̄+1−r2) < 1, where m̄ = max{(r−δ)2, (r− δ̄)2}, such
that B ≤ |ρ̄|/(1+ s+1 ) for µ2 ≥ µ2. Given r, |ρ̄|/(1+ s+1 ) = τ can be solved nu-
merically for the threshold value, mc(τ), using the algorithm in Proposition 2
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to compute s+1 . Provided this threshold exceeds µ2, it can then be used as the
non-centrality parameter to generate an asymptotically valid χ2

1(m
c(τ)) criti-

cal value. Since ρ̄ has a sharp bound away from unity, this critical value will
be lower than that of the unconstrained test. In finite samples, the covariance
r is unknown but can be replaced with a consistent estimate r̂.

For a general formulation of the weak instrument test with parameter con-
straints, we make the following assumption:

Assumption 5. max
β:Q(β)≤0

ρ2(β) = ρ̄2 < 1− ε, for some ε > 0.

Here, we have made the dependence of ρ2 on β in (13) explicit. This assump-
tion states that some constraints Q(β) ≤ 0 are available to the econometrician
that are sufficient – given Σwv – to bound the endogeneity parameter ρ2 strictly
below one. The set of weakly-identified admissible models is defined as:

Definition 3. The constrained weak instrument set is

Bc
τ =

{
ρ2 ∈ [0, ρ̄2);µ2 ∈ R≥0 : B(ρ2, µ2) ≥ τ

}
.

The following threshold for µ2 guarantees inclusion in Bc
τ :

Proposition 7. Let mc(τ) ∈ R≥0 be the unique value of µ2 implicitly defined
by |ρ̄|/(1 + s+R) = τ . For mc(τ) ≥ µ2, {µ2, ρ2} ∈ Bc

τ if and only if ρ2 ≤ ρ̄2 and
µ2 ≤ mc(τ).

Proof. See Appendix B.7

Since the upper bound ρ̄2 depends on Σwv, in practice we must use an estimate
ˆ̄ρ2 based on Σ̂wv = [w v]′[w v]/T , which in turns leads to an estimate of the
threshold, m̂c(τ). Asymptotic validity is established next:

Proposition 8. Under Assumptions 1-5 and mc(τ) ≥ µ2, the constrained
weak instrument test is pointwise asymptotically valid, that is

sup
µ2≤mc(τ)

lim
T→∞

Prob (F > C (m̂c(τ), α)) = α,

where C(µ2, α) is the upper α-quantile of χ2
1(µ

2).

Proof. See Appendix B.8.
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Unlike the unconstrained test, the critical values for the constrained test de-
pend not only on R, but also on the constraints Q(β) ≤ 0 and the sample
covariance Σ̂wv, which jointly determine the estimate of the upper bound on
the endogeneity parameter, ρ̄2. Conditional on this bound, the threshold esti-
mate m̂c(τ) is computed using the iterative algorithm in Proposition 2. This
algorithm is computationally inexpensive and guaranteed to converge to the
mode. Once m̂c(τ) is established, the critical values are readily obtained using
standard statistical software commands.16

4.3.3 Robust Versions of the Test

The testing procedures above are based on the assumption of conditional
homoskedasticity and serially uncorrelated regression scores (CHSU), see
Assumption 4. While a common assumption in instrumental variable IRF
applications, it may not always be appropriate. To allow for heteroskedas-
ticity or serial correlation, suppose that [η1, η

′
2]

′ in Assumption 4 follows
a normal distribution with some covariance Ωwv ̸= Σwv. In that case,
Propositions 1-3 continue to hold after replacing Σwu with Ωwu containing
the elements ω2

w, ωwu = ωwv − βω2
w, and Ωu = Ωv − ββ′ω2

w − ωwuβ
′ − ω′

wu.
What changes, however, is that ωwu/ω

2
w is no longer the asymptotic bias of

the OLS estimate, β̂OLS. Consequently, Θωwu/ω
2
w is also no longer equal

to the asymptotic bias of δ̂OLS. We describe two options to accommodate
a general covariance Ωwv that differ in the choice of bias criterion. The
first option maintains the Montiel Olea and Pflueger (2013) bias criterion,
in which case researchers can simply proceed as in the CHSU case but
using the robust F -statistic. The second option maintains the asymptotic
OLS bias and covariance in the criterion, which results in application-
specific critical values for the robust F -statistic that depend on consistent
estimates of Ωwv and ΣY y = E [[y, Y ]′[y, Y ]] and must be obtained numerically.

Option 1: Bias criterion of Montiel Olea and Pflueger (2013):

Bhet
1 =

√
d+′
IVW

†
Ωd

+
IV

1 + d′W †
Ωd

,(18)

16These are as in footnote 15, but replacing m(τ) with m̂c(τ).
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where d = Θωwu/ω
2
w, d+′

IV is defined as in Proposition 3 after replacing dOLS

with d and using ρ2 = ω′
wuΩ

−1
u ωwu/ω

2
w, and WΩ is defined as in Definition 1

but using the Cauchy scale matrix Ωu|w/ω
2
w implied by Ωwu. As a benchmark,

this criterion maintains the modal IV bias in the most adverse scenario of an
irrelevant instrument and perfect endogeneity. As in the CHSU case, the bias
criterion simplifies to 0 ≤ Bhet

1 = |ρ|/(1 + s+R) < 1, where s+R depends on R,
µ2 and ρ2. The test can be based on the robust F -statistic T (Π̂/σ̂rob

w )2, where
σ̂rob
w is a heteroskedasticity-autocorrelation robust estimate of the standard

deviation of the residual in the first-stage equation, and the critical values in
Table 1 remain applicable.

Option 2: Bias criterion based on the OLS benchmark:

Bhet
2 =

√
d̄+′
IVW

†d̄+IV
1 + d′OLSW

†dOLS

(19)

where W † and dOLS are defined using σ2
w = σ2

Y , σwu = σY y/σ
2
Y − β and

Σu = Σy − ββ′σ2
w − σwuβ

′ − βσ′
wu, and ΣY y =

[
σ2
Y σ′

Y y

σY y Σy

]
. The bias criterion

can be written as

Bhet
2 =

√
1

1 + s+R
·

√
(ωwv/ω2

w − β)′W †(ωwv/ω2
w − β)

1 + (σY y/σ2
Y − β)′W †(σY y/σ2

Y − β)
(20)

where s+R depends on R, µ2, and ρ2 =
(ωwv/ω2

w−β)′W †
Ω(ωwv/ω2

w−β)

1+(ωwv/ω2
w−β)′W †

Ω(ωwv/ω2
w−β)

. The supre-

mum of Bhet
2 ≥ 0 is generally no longer characterized by ρ2 → 1 and the bias

criterion can exceed unity. In practice, obtaining the supremum as a function
of µ2 requires numerical optimization over β, and evaluating (20) requires es-
timates of Ωvw and ΣY y.17 The critical values in Table 1 are not applicable,
but need to be computed separately for every application. The relevant test
statistic is the robust F -statistic.

17The optimization problem can feature local maxima. We obtained good results using the value that
maximizes the second term in (20) as a starting value in standard optimization algorithms. This value is
given by σY y

σ2
Y

+
(σY y/σ

2
Y −ωwv/ω

2
w)

(ωwv/ω2
w−σY y/σ2

Y )′W †(ωwv/ω2
w−σY y/σ2

Y )
.
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5 Weak Instrument Bias in Empirical Applications

A comprehensive empirical assessment of weak instrument bias in applications
of IV-based IRF estimators is beyond the scope of this paper. Instead we
examine four structural VAR studies that are broadly representative for the
range of scenarios researchers are likely to encounter when applying our test:

1. Monetary Policy Shocks (MP): Based on Gertler and Karadi (2015), this
application uses a monthly VAR(12) in the 1-year Treasury rate, indus-
trial production, the CPI, and the excess bond premium. The scaling
variable is the 1-year Treasury rate, and the shocks are identified using
high-frequency changes in interest rate futures around FOMC announce-
ments.

2. Oil Supply Shocks (OIL): Following Montiel Olea et al. (2021), we esti-
mate a monthly VAR(12) in oil production, the Kilian (2009) index of
global economic activity, and the real price of oil. Oil production serves
as the scaling variable, and shocks are identified using a monthly version
of the Kilian (2008) exogenous oil supply shock measure.

3. Uncertainty Shocks (UNC): Drawn from Carriero et al. (2015), this model
is a monthly VAR(12) comprising the VXO volatility index, industrial
production, employment, hours worked, the CPI, real wages, the Federal
Funds Rate, and stock prices. The scaling variable is the VXO, and the
shock is identified with the geopolitical event indicator constructed by
Bloom (2009).

4. Tax Policy Shocks (TAX): Based on Mertens and Montiel Olea (2018),
this annual VAR(1) includes average marginal tax rates, average adjusted
gross income, real GDP, unemployment, inflation, the federal funds rate,
government spending, debt, and stock prices. The scaling variable is the
marginal tax rate, and the shocks are identified using a narrative series
of historical tax reforms as the instrument.

In each application, the instrumental variable is the residual in the regression
of the identifying series on the lag sequence in the VAR system.

The first column in Table 2 reports the sample F -statistic in (15) for each
application. All F -statistics exceed 10, such that researchers would reject the
null of a weak instrument based on the common rule-of-thumb associated with
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α = 0.05, τ = 0.10. The F -statistics for the OIL, UNC and TAX applications
also exceed the Montiel Olea and Pflueger (2013) threshold of 23.

The subsequent four columns in Table 2 provide bootstrap critical values
for the baseline test (Section 4) at significance levels α ∈ {0.05, 0.10} and
bias thresholds τ ∈ {0.10, 0.20}. Panel (a) reports critical values for pointwise
tests of individual IRF coefficients. Notably, our proposed test yields results
that frequently diverge from existing procedures. While the pointwise test
consistently rejects the weak instrument null in the UNC and TAX applica-
tions, results for the OIL application reject only when τ = 0.20. In addition,
the test never rejects the null in the MP application. Panel (b) reports crit-
ical values for the simultaneous test, which considers the IRF coefficients of
all VAR variables jointly across any combination of forecast horizons. While
this joint test consistently rejects the null of weak identification in the UNC
application, it fails to reject in the remaining three applications.

In conclusion, while weak instrument bias appears to be a negligible concern
for the UNC application, the evidence for the OIL and TAX applications
remains mixed at best. For the MP application, the test results provide no
basis to rule out substantial weak instrument bias.

The unconstrained test is designed to be robust against the worst-case
DGP, characterized by the limit ρ2 → 1. As established above, this condi-
tion requires that at least one IRF coefficient under consideration becomes
arbitrarily large in absolute value. The condition also requires the variance
contribution of the targeted structural shock to the innovations in the scaling
variable innovations to vanish (i.e., 1 − ρ2 → 0). In the MP application, for
instance, the worst-case scenario represents a DGP where exogenous monetary
policy shocks play no role for interest rate dynamics; in the OIL application,
the worst-case occurs when oil supply shocks play no role in driving oil pro-
duction, and so on.

Researchers may choose to limit the set of admissible DGPs by imposing
additional structural restrictions, Q(β) ≤ 0, to exclude these extreme scenar-
ios. As discussed in Section 4.3.2, for such restrictions to meaningfully affect
the set of weakly-identified models, they must bound the endogeneity param-
eter ρ2 away from unity. This is equivalent to enforcing a lower bound on the
structural shock’s variance contribution, 1 − ρ2. While various constraints –
such as sign or magnitude restrictions on structural parameters or IRFs – can
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Table 2: Test Results in Empirical Applications

No Constraints on DGP: With Constraints on DGP:
Bootstrap Critical Value Minimum Required 1− ρ2

τ = 0.10 τ = 0.20 τ = 0.10 τ = 0.20
F -stat α = 0.05 0.10 0.05 0.10 α = 0.05 0.10 0.05 0.10

(a) Pointwise Test

MP 10.8 33.9 29.2 18.2 15.0 0.93 0.89 0.71 0.53
OIL 29.3 35.2 30.1 19.5 15.7 0.38 0.06 – –
UNC 255.2 34.5 30.2 19.3 15.9 – – – –
TAX 43.6 42.5 34.9 22.6 17.9 – – – –

(b) Joint Test

MP 10.8 56.1 50.5 29.2 25.1 0.96 0.94 0.84 0.77
OIL 29.3 46.3 41.3 24.2 20.8 0.65 0.53 – –
UNC 255.2 99.2 91.0 48.1 42.6 – – – –
TAX 43.6 110.5 99.3 53.7 45.3 0.83 0.78 0.33 0.07

Notes: Test results for the weak instrument null for individual IRF coefficients (Panel a) and
for all IRF coefficients jointly (Panel b). The last four columns show the minimum required
variance contribution of the targeted shock (the smallest 1−ρ2) that parameter restrictions
must imply in order to reject the weak instrument null. Entries marked “–” indicate that
the null is rejected for all DGPs, without requiring any parameter restrictions.

generate such a bound, their plausibility is inherently application-specific.
Rather than evaluating specific restrictions for each application, we pose

an alternative question: What is the minimum variance contribution, 1 −
ρ2, required to reject the weak instrument null? A required value near one
implies that the test only rejects if the true DGP yields nearly unbiased OLS
estimates; in a VAR context, this means the true IRF must closely resemble
one generated by a Cholesky decomposition with the scaling variable ordered
first. Conversely, a relatively small required value for 1−ρ2 suggests that even
modest parameter restrictions may be sufficient to alter the test’s outcome.
The minimum required variance contribution thus provides a general metric
for quantifying the degree of restrictiveness required across applications.

For cases where the unconstrained test fails to reject weak identification,
the final four columns of Table 2 report the minimum variance contribution,
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1−ρ2, that is required for a constrained test to reject the null. In the OIL ap-
plication, relatively small variance contributions of supply shocks to monthly
oil production fluctuations are sufficient to reject in pointwise tests; however,
the joint test requires a contribution of at least one half. In the TAX ap-
plication, modest variance contributions from tax shocks allow for rejection
in the joint test at τ = 0.20, though substantially higher values are required
when τ = 0.10. The results for the MP application are relatively clear: To
reject the null at τ = 0.20 and α = 0.10 in a pointwise test, monetary policy
shocks must account for at least one-half of the variance of monthly interest
rate innovations. At the conventional levels of τ = 0.10 and α = 0.05, mone-
tary policy shocks must explain nearly all variation (93 percent) in the interest
rate to reject weak identification. In the joint test, the monetary policy shocks
must explain a large majority of the monthly innovations in the interest rate
for any of the values of τ and α reported in Table 2. Consequently, ruling
out weak identification in the MP application necessitates the assumption of
a DGP in which a recursive identification scheme yields approximately unbi-
ased impulse responses. We conclude that the high-frequency instrument used
in the Gertler and Karadi (2015) VAR does not appear to add much useful
information for reliably identifying the effects of monetary policy shocks on
macroeconomic aggregates.

6 Concluding Remarks

This paper provides theoretical insights and a novel toolkit for addressing weak
instrument bias in just-identified IV-based impulse response estimators. While
developed in the context of IRFs, these results extend naturally to general IV
estimation with multiple outcome variables and to the canonical just-identified
single-equation model. Looking ahead, our distributional results offer a foun-
dation for developing size-based weak instrument tests or adjusted critical
values for t-inference, following the approach of Lee et al. (2022). Further
research could expand these methods to over-identified IRF models or spec-
ifications involving multiple endogenous variables, such as those in Mertens
and Ravn (2013) and Mertens and Montiel Olea (2018). Additionally, our an-
alytical findings highlight potential pitfalls in simulation-based assessments of
IRF estimators (Li et al. 2024); specifically, moment-based criteria like mean-
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squared error may be ill-defined in the context of weak identification. Finally,
future studies might explore alternative asymptotic frameworks and incorpo-
rate other sources of finite-sample bias, such as lag truncation (Montiel Olea
et al. 2024).
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APPENDIX

A New Keynesian DGP of Illustrative Example of Section 1.1

The data is simulated from the rational expectations solution to the model:

Rt = ϕππt + sRt ,(A.1)

gapt = Etgapt+1 − (Rt − Etπt+1) + sdt ,

πt = κ gapt + βdEtπt+1 + sst ,

sRt = ρRs
R
t−1 + ϵRt ,

sdt = ρds
R
t−1 + ϵdt ,

sst = ρss
s
t−1 + ϵst .

and [ϵRT , ϵ
d
t , ϵ

s
t ]
′ ∼ N (0, I). The VAR(1) representation is Rt

gapt

πt

 = D

ρR 0 0

0 ρd 0

0 0 ρs

D−1

 Rt−1

gapt−1

πt−1

+D

ϵ
R
t

ϵdt

ϵst

 ,(A.2)

where D =


1−

κϕπ
1−βdρr

(1−ρr)+
(ϕπ−ρr)κ
1−βdf ρr

κϕπ
1−βdρd

(1−ρd)+
(ϕπ−ρd)κ

1−βdρd

ϕπ

1−βdρs+
κ(ϕπ−ρs)

1−ρs

− 1

(1−ρr)+
(ϕπ−ρr)κ
1−βdρr

1

(1−ρd)+
(ϕπ−ρd)κ

1−βdρd

−
ϕπ−ρs
1−ρs

1−βdρs+
κ(ϕπ−ρs)

1−ρs

−
κ

1−βdρr

(1−ρr)+
(ϕπ−ρr)κ
1−βdρr

κ
1−βdρd

(1−ρd)+
(ϕπ−ρd)κ

1−βdρd

1

1−βdρs+
κ(ϕπ−ρs)

1−ρs

 .

We set ϕπ = 1.5, κ = 0.20, βd = 0.99, ρR = 0.5, ρd = 0.95, ρs = 0.5, and
generate zt from

zt = λϵRt +
√

(1− λ2)ϵzt ; E[ϵitϵ
z
t ] = 0, i = R, d, s; ϵzt ∼ N (0, 1),(A.3)

using λ = 0.75.
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Figure A.1: LP-IV Impulse Responses of Inflation to an Interest Rate Shock

Notes: Estimated inflation responses to a one percentage point positive interest rate shock in
Monte Carlo samples (T = 250) from a simple NK model with Gaussian shocks; see Appendix
A. Left : LP-IV estimates with a valid instrument and one lag of the interest rate, output gap
and inflation as controls. ‘LP OLS in Population’ is the population OLS estimate of the IRF;
‘Mode (Analytical Approximation)’ is the modal LP-IV response from Proposition 3. Right :
‘Simulated Density’ is a kernel density estimate of the impact based on 50,000 Monte Carlo
samples. Analytical density and major mode (black circle) based on Proposition 3.

B Proofs

B.1 Proof of Proposition 1

Proof. Denoting the joint normal density of the vector [ν1, ν
′
2]

′ by φν(n1, n2)

and using the method of transformations, the density of ν2/ν1 is

φ(b) =

∫ ∞

−∞
det(J) · φν(m,m · b)dm,(B.1)

=

∫ ∞

−∞

|mN | exp

(
−1

2

[
m− c

m · b

]′
Σ−1

wu

[
m− c

m · b

])
(2π)

N+1
2 det(Σwu)

1
2

dm,

where m = n1 and J = mN is the Jacobian of the inverse transformation
[n1, n

′
2]

′ = [m,m · b′]′ with respect to [m, b′]′. Based on the inverse of a parti-
tioned matrix,

Σ−1
wu =

1

σ2
w(1− ρ2)

[
1 −σ′

wuΣ
−1
u

−Σ−1
u σwu σ2

w(1− ρ2)Σ−1
u + Σ−1

u σwuσ
′
wuΣ

−1
u

]
,(B.2)
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such that [
m− c

m · b

]′
Σ−1

wu

[
m− c

m · b

]
=

µ2

1− ρ2
+ d1(b)m+ d2(b)m

2,(B.3)

where

d1(b) =
2c(b′Σ−1

u σwu − 1)

(1− ρ2)σ2
w

; d2(b) =
(b′Σ−1

u σwu − 1)2 + σ2
w(1− ρ2)b′Σ−1

u b

(1− ρ2)σ2
w

,

with d2(b) > 0 since 0 ≤ ρ2 < 1. Using det(Σwu) = σ2
w(1 − ρ2) det(Σu) and

(B.3),

φ(b) =

∫ ∞

−∞
det(mN) · d0 · exp

(
−1

2

(
d1(b)m+ d2(b)m

2
))

dm,(B.4)

where d0 = σ−1
w (1− ρ2)−

1
2 (2π)−

N+1
2 det(Σu)

− 1
2 e

− 1
2

µ2

1−ρ2 . Splitting the integral,

φ(b) = d0


∫ ∞

0

mN exp

(
−1

2

(
d1(b)m+ d2(b)m

2
))

dm︸ ︷︷ ︸
f1(b)

(B.5)

+(−1)N
∫ 0

−∞
mN exp

(
−1

2

(
d1(b)m+ d2(b)m

2
))

dm︸ ︷︷ ︸
f2(b)

 .

Both integrals always converge since d2(b) > 0. We first solve the integral in
f1(b). Completing the square,

f1(b) = e
d1(b)

2

8d2(b)

∫ ∞

0

mN exp

(
−1

2
d2(b)

(
m+

d1(b)

2d2(b)

)2
)
dm.(B.6)

Using the change of variables m = n− d1(b)
2d2(b)

,

f1(b) = e
d1(b)

2

8d2(b)

∫ ∞

d1(b)
2d2(b)

(
n− d1(b)

2d2(b)

)N

exp

(
−1

2
d2(b)n

2

)
dn.(B.7)
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Using the binomial expansion,

f1(b) = e
d1(b)

2

8d2(b)

N∑
j=0

(
N

j

)(
− d1(b)

2d2(b)

)N−j ∫ ∞

d1(b)
2d2(b)

nj exp

(
−1

2
d2(b)n

2

)
dn︸ ︷︷ ︸

Mj

.

(B.8)

The Mj integrals in the summation can be expressed in terms of the gamma
function Γ(s) = γ(s, 0), the lower incomplete gamma function γ(s, v), and the
upper incomplete gamma function Γ(s, v) = Γ(s)−γ(s, v). Let q = d2(b)n

2/2.
If d1(b) ≥ 0,

Mj =
1

2

(
d2(b)

2

)− j+1
2
∫ ∞

d1(b)
2

8d2(b)

q
j−1
2 e−qdq =

1

2

(
d2(b)

2

)− j+1
2

Γ

(
j + 1

2
,
d1(b)

2

8d2(b)

)
.

(B.9)

If instead d1(b) < 0,

Mj =

∫ ∞

0

nj exp

(
−1

2
d2(b)n

2

)
dn+

∫ 0

d1(b)
2d2(b)

nj exp

(
−1

2
d2(b)n

2

)
dn ,

(B.10)

=

∫ ∞

0

nj exp

(
−1

2
d2(b)n

2

)
dn+

∫ − d1(b)
2d2(b)

0

(−1)j(−n)j exp

(
−d2(b)n

2

2

)
d(−n) ,

=
1

2

(
d2(b)

2

)− j+1
2

Γ

(
j + 1

2

)
+ (−1)j

∫ d1(b)
2

8d2(b)

0

q
j−1
2 exp (−q) dq

 ,

=


(

d2(b)
2

)− j+1
2 1

2
Γ
(

j+1
2
, d1(b)2

8d2(b)

)
if j is odd(

d2(b)
2

)− j+1
2
(
Γ
(
j+1
2

)
− 1

2
Γ
(

j+1
2
, d1(b)2

8d2(b)

))
if j is even

.

Following analogous steps for f2(b) as those leading to (B.8),

f2(b) = e
d1(b)

2

8d2(b)

N∑
j=0

(
N

j

)(
− d1(b)

2d2(b)

)N−j ∫ d1(b)
2d2(b)

−∞
nj exp

(
−1

2
d2(b)n

2

)
dn︸ ︷︷ ︸

Nj

.

(B.11)
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If d1(b) ≥ 0,

Nj =

−
(

d2(b)
2

)− j+1
2 1

2
Γ
(

j+1
2
, d1(b)2

8d2(b)

)
if j is odd(

d2(b)
2

)− j+1
2
(
Γ
(
j+1
2

)
− 1

2
Γ
(

j+1
2
, d1(b)2

8d2(b)

))
if j is even

,(B.12)

and if d1(b) < 0,

Nj = (−1)j
(
d2(b)

2

)− j+1
2 1

2
Γ

(
j + 1

2
,
d1(b)

2

8d2(b)

)
.(B.13)

Regardless of the sign of d1(b), when N is even

Mj +Nj =

0 if j is odd(
d2(b)
2

)− j+1
2
Γ
(
j+1
2

)
if j is even

,(B.14)

such that when N is even,

φ(b) = d0e
d1(b)

2

8d2(b)

N
2∑

k=0

(
N

2k

)(
− d1(b)

2d2(b)

)N−2k (
d2(b)

2

)− 2k+1
2

Γ

(
2k + 1

2

)
.

(B.15)

When N is odd:

Mj −Nj =


(

d2(b)
2

)− j+1
2
Γ
(

j+1
2
, d1(b)2

8d2(b)

)
if j is odd

− sgn(d1(b))
(

d2(b)
2

)− j+1
2
γ
(

j+1
2
, d1(b)2

8d2(b)

)
if j is even

.(B.16)

Using Γ(s, t) = Γ(s)− γ(s, t) and − sgn(t)(−t)N−j = −(−|t|)N−j,

φ(b) = d0e
d1(b)

2

8d2(b)

(
N∑

j=1,3,5,...

(
N

j

)(
− d1(b)

2d2(b)

)N−j (
d2(b)

2

)− j+1
2

Γ

(
j + 1

2

)(B.17)

−
N∑
j=0

(
N

j

)(
−|d1(b)|
2d2(b)

)N−j (
d2(b)

2

)− j+1
2

γ

(
j + 1

2
,
d1(b)

2

8d2(b)

))
.
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Rearranging terms, using ζ(b) = d1(b)/(2
√
d2(b)) and the fact that d2(b) > 0,

φ(b) = d0d2(b)
−N+1

2 e
ζ(b)2

2

(
N∑

j=1,3,5,...

(
N

j

)
2

j+1
2 (−ζ(b))N−j Γ

(
j + 1

2

)
(B.18)

−
N∑
j=0

(
N

j

)
2

j+1
2 (−|ζ(b)|)N−j γ

(
j + 1

2
,
ζ(b)2

2

))
.

Combining the expressions for φ(b) in (B.15) for even N and (B.18) for odd N ,
and using the above definitions for d0 and d2(b) and ζ(b) yields the expression
for φ(b) in the proposition.

B.2 Proof of Proposition 2

Proof. The proof omits the subscript N from s+N for brevity. When µ2 = 0,
φ(b) is a Cauchy distribution with unique mode σwu/σ

2
w such that s+ = 0.

When ρ2 = 0, φ(b) has single mode at zero. The remainder of the proof
assumes µ2, ρ2 > 0.

The derivative of the density function φ(b) w.r.t b is

dφ(b)

db
=

σ2
wφ(b)(N + 1)

b′Σ−1
u σwu − 1

Σ−1
u

[(
(b′Σ−1

u b)σwu + (1− b′Σ−1
u σwu)b

)
g (ζ(b))

1 + (b− σwu/σ2
w)

′Σu|w/σ2
w(b− σwu/σ2

w)
− σwu

σ2
w

]
,(B.19)

where ζ(b) is defined in Proposition 1 and

g(t) = 1 +
1

N + 1

dh(t)

dt

t

h
=

1 + 1
N+1

(
t2 + tge(t)

)
if N is even;

1 + 1
N+1

(
t2 + tgo(t)

)
if N is odd;

(B.20)

where

ge(t) =

∑N−2
j=0,2,4,...

(
N
j

)
(N − j)

(
t/
√
2
)N−j−1

Γ
(
j+1
2

)
/
√
2∑N

j=0,2,4,...

(
N
j

)
(t/

√
2)N−jΓ

(
j+1
2

) ;

go(t) =

∑N−2
j=1,3,5,...

(
N
j

)
(N − j)

(
t/
√
2
)N−j−1

Γ
(
j+1
2

)
/
√
2

+ sgn(t)N
∑N−1

j=0

(
N−1
j

) (
−|t|/

√
2
)N−j−1

γ
(

j+1
2
, t

2

2

)
/
√
2∑N

j=1,3,5,...

(
N
j

)
(t/

√
2)N−jΓ

(
j+1
2

)
−
∑N

j=0

(
N
j

)
(−|t|/

√
2)N−j γ

(
j+1
2
, t

2

2

) .

The function g(t) depends only on N , and is plotted in Figure B.2.

48



At any mode bm, the term in square brackets in (B.19) is equal to zero.
This means that

(b′mΣ−1
u bm)σwu + (1− b′mΣ−1

u σwu)bm
1 + (bm − σwu/σ2

w)
′Σu|w/σ2

w(bm − σwu/σ2
w)

g (ζ(bm)) =
σwu

σ2
w

.(B.21)

Since g(t) is a scalar, the N × 1 vector in front of g (ζ(bm)) in (B.21) is
proportional to σwu. That vector is a linear combination of bm and σwu with
scalar weights, which implies that bm is proportional to σwu as well. Let

bm =
σwu/σ

2
w

1 + s
,(B.22)

where s ∈ R is an unknown scalar determining the proportionality to σwu

corresponding to a mode of φ(b). The proof proceeds by finding s+, or the
value of s that corresponds to the major mode b+ = argmaxφ(b).

Substituting (B.22) into (B.21),

(1− ρ2)(1 + s)

s2 + (1− ρ2)(1 + 2s)
g

(
−(1− ρ2 + s)|µ|/

√
1− ρ2√

s2 + (1− ρ2)(1 + 2s)

)
σwu

σ2
w

=
σwu

σ2
w

.(B.23)

Any value of s corresponding to a mode, including s+, must therefore be a
root of the scalar equation

(1− ρ2)(1 + s)

s2 + (1− ρ2)(1 + 2s)
g

(
−(1− ρ2 + s)|µ|/

√
1− ρ2√

s2 + (1− ρ2)(1 + 2s)

)
= 1.(B.24)

Let s = (1− ρ2)(k − 1). With this transformation of variables, (B.24) can be
rewritten as

(1− ρ2)k + ρ2

(1− ρ2)k2 + ρ2
g (r(k)) = 1, where r(k) = − k|µ|/

√
1− ρ2√

k2 + ρ2/(1− ρ2)
.(B.25)

When µ2, ρ2 > 0, the function r(k) is strictly decreasing and its range is
(−|µ|/(1 − ρ2)

1
2 , |µ|/(1 − ρ2)

1
2 ). Equation (B.25) can be rewritten as the

quadratic equation

k2 − g (r(k)) k − ρ2

1− ρ2
(g (r(k))− 1) = 0,(B.26)
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Figure B.1: Fixed Points of κ1 and κ2

kn+1 = κ1(kn) kn+1 = κ2(kn)

Notes: Illustrative examples for N = 2, ρ2 = 0.92

with solutions

κ1(k) =
1

2
g (r(k)) +

1

2

√
g (r(k))2 +

4ρ2

1− ρ2
(g (r(k))− 1) ;(B.27)

κ2(k) =
1

2
g (r(k))− 1

2

√
g (r(k))2 +

4ρ2

1− ρ2
(g (r(k))− 1) .

Values of k that solve (B.25) are therefore fixed points of either one of the
following two recurrence relations:

kn+1 = κ1(kn), kn+1 = κ2(kn).(B.28)

Figure B.1 provides illustrative examples of both relationships.
Consider kn+1 = κ1(kn). It is easy to verify that κ1(0) = 1 since r(0) = 0

and g(0) = 1. In addition, κ1(k) > 1 for k ̸= 0, since g(t) > 1 for t ̸= 0

and ρ2/(1 − ρ2) > 0 (see left panel of Figure B.2). Since κ1(k) ≥ 1,
kn+1 = κ1(kn) has no fixed points on the interval (−∞, 0]. Note that
sgn (dκ1(k)/dk) = sgn (dg(r(k))/dr(k)) · sgn (dr(k)/dk). It is straightfor-
ward to check that dg(t)/dt < 0 for t < 0. Since r(k) < 0 for k > 0 and
dr(k)/dk < 0, it follows that dκ1(k)/dk > 0 for k > 0.
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Figure B.2: The g(t), φk(k) and fk(k) functions.

Next, note that limk→∞ κ1(k) = k̄, where

k̄ =
1

2
g

(
|µ|

(1− ρ2)
1
2

)
+

1

2

√√√√g

(
|µ|

(1− ρ2)
1
2

)2

+
4ρ2

1− ρ2

(
g

(
|µ|

(1− ρ2)
1
2

)
− 1

)
.

(B.29)

Since κ1(k) is continuous, strictly increasing for k > 0, and k̄ is a finite positive
constant, there must be some value 0 < k′ < k̄ such that κ1(k

′) − k′ < 0.
Because κ1(0)−0 > 0, by the intermediate value theorem, there exists at least
one fixed point of kn+1 = κ1(kn) within the interval [0, k′]. Since k = 0 is not
a fixed point as κ1(0) = 1 > 0, any fixed point must be strictly larger than
one and strictly smaller than k̄.

Let k+ > 0 be the largest fixed point, k+ = κ1(k
+). By definition, this

means that κ1(kn) < kn for all kn ∈ (k+,∞), else there would be a fixed point
that is strictly larger than k+. Therefore κ1(kn) − κ1(k

+) < kn − k+ is a
contraction and lim

n→∞
kn = k+ for any starting point k0 ∈ [k+,∞). The limit in

(B.29) above is guaranteed to lie in (k+,∞), and therefore the starting point
k0 = k̄ guarantees convergence to k+. Finally, since κ1(k

+) > 1, it must be
the case that s+ = (1− ρ2)(k+ − 1) ∈ (0, k̄).

Consider kn+1 = κ2(kn). It is easy to verify that κ2(0) = 0 since r(0) = 0

and g(0) = 1. Therefore, k = 0 is a fixed point of kn+1 = κ2(kn). In addition,
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κ2(k) < 0 for k ̸= 0, since g(t) > 1 for t ̸= 0 and ρ2/(1 − ρ2) > 0. Since
κ2(k) < 0, kn+1 = κ2(kn) has no fixed points within the interval (0,∞), and
therefore kn+1 = κ2(kn) has no fixed points larger than k+.

It remains to be shown that s+ = (1− ρ2)(k+− 1) selects the major mode,
and not any other mode of φ(b). To see this, first substitute (B.22) into the
expression for φ(b) in Proposition 1 and use the previous transformation of
variables to obtain the scalar function

φk(k) ∝

(
((1− ρ2)k + ρ2)

2

(1− ρ2)k2 + ρ2

)N+1
2

h (r(k)) .(B.30)

Intuitively, φk(k) provides the likelihood of values of b that are proportional
to σwu, where these values are indexed by k = 1 + s/(1− ρ2), the scalar that
determines the constant of proportionality. As shown above, these values must
include all modes of φ(b).

First, suppose k− < 0 corresponds to a mode. Since k− < −k−,

(1− ρ2)k− + ρ2 < (1− ρ2)(−k−) + ρ2(B.31)

⇒ ((1− ρ2)k− + ρ2)
2

(1− ρ2)(k−)2 + ρ2
<

((1− ρ2)(−k−) + ρ2)
2

(1− ρ2)(−k−)2 + ρ2
.

In addition, it is easy to check that h(r(k−)) = h(r(−k−)). Therefore
fk(−k−) > fk(k

−), such that no k− < 0 can be the major mode.
Next, we show that no 0 ≤ k < k+ can be the major mode. Since at any

mode k+ρ2/(1−ρ2)
k2+ρ2/(1−ρ2)

g (r(k)) = 1, the function

fk(k) = ((1− ρ2)k + ρ2)
N+1

2 h (r(k)) g(r(k))−
N+1

2(B.32)

intersects φk(k) at all modes, as illustrated in the right panel of Figure B.2.
It is straightforward to check that h (r(k)) /g(r(k)) is strictly increasing for
k ∈ [0,∞), and therefore fk(k) is also strictly increasing for k ∈ [0,∞). Since
k+ is the largest value for which fk(k) = φk(k), k+ must be the major mode.

Next, we establish how s+ varies with ρ2, µ2 and N . Define L(k, ρ2, µ2) =
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k − κ1(k). Using L(k+, ρ2, µ2) = 0 and the implicit function theorem,

dk+

dρ2
= − ∂L

∂ρ2
(k+, ρ2, µ2)

/∂L

∂k
(k+, ρ2, µ2)(B.33)

where

∂L

∂ρ2
(k+, ρ2, µ2) = −k+ − 1

1− ρ2
·
1 + k+ − g(t+) + 1

2
(1 + k+)ϵg(t

+)

2k+ − g(t+)
,

∂L

∂k
(k+, ρ2, µ2) = 1− ρ2

2k+ − g(t+)

ϵg(t
+)

(1− ρ2)k+
,

and t+ = r(k+) and ϵg(t) =
dg
dt
(t)
/
(g(t)/t) is the elasticity of g(t). Therefore,

ds+

dρ2
= (1− ρ2)

dk+

dρ2
− k+ − 1

1− ρ2
(B.34)

= (k+ − 1)

(
k+(k+ + 1)

2
+

ρ2

1− ρ2

)

·

 ϵg(t
+)− 2g(t+)−1

g(t+)+1

g(t+)k+ + ρ2

1−ρ2
(2(g(t+)− 1)− ϵg(t+))

 ,

where the last expression follows from substituting in (B.25) and rearranging.
Note that k+ − 1 > 1, and it is easy to verify that ϵg(0) = 0 and 2(g(t) −
1)/(g(t) + 1) < ϵg(t) < 2(g(t) − 1) for all t ̸= 0, as illustrated in the left
and right panels of Figure B.3. Therefore, ds+/dρ2 > 0 and s+ is strictly
increasinq in ρ2. Similarly, using the implicit function theorem,

dk+

dµ2
= − ∂L

∂µ2
(k+, ρ2, µ2)

/∂L

∂k
(k+, ρ2, µ2),(B.35)

where

∂L

∂µ2
(k+, ρ2, µ2) = − k+(k+ − 1)

2k+ − g(t+)
· g(t

+)ϵg(t
+)/µ2

2(g(t+)− 1)
,

such that

ds+

dµ2
= (1− ρ2)

dk+

dµ2
,(B.36)
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Figure B.3: Bounds on ϵg(t).

=
(1− ρ2)g(t+)(k+)2(k+ − 1)ϵg(t

+)/µ2

2(g(t+)− 1)
(
(2k+ − g(t+))k+ − ρ2

1−ρ2
ϵg(t+)

) .
Since k+ − 1 > 0 and g(t+)− 1 > 0, and

2(k+ − g(t+))k+ >
ρ2

1− ρ2
ϵg(t

+) ⇔ 2(g(t+)− 1) > ϵg(t
+),(B.37)

it follows that ds+/dµ2 > 0 and s+ is strictly increasinq in µ2. Finally, (B.27)
implies that k+ is increasing in g(t) and since g(t) is decreasing in N (left
panel of Figure B.2), it follows that s+ is strictly decreasing in N for µ2 > 0.

B.3 Proof of Proposition 3

Proof. If Θ is full row rank but not full column rank, i.e. rank(Θ) = H < N ,
then the distribution of [ν1, (Θν2)

′] is jointly normal as in (11), but with
(positive definite) covariance matrix Σ̃wu. In this case, Propositions 1 and 2
apply directly with the substitutions given in the Proposition.

If Θ has full column rank, d = Θb is a change of variables that can be
exactly inverted using the Moore-Penrose pseudoinverse despite Θ not being
square, b = Θ†d, where Θ† = (Θ′Θ)−1Θ′. Θ : RK → RH , H > N , is a linear
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map, and applying Theorem 4.7 of Negro (2024) for the pdf induced for d

yields

(B.38) φδ(d) = det(Θ′Θ)−1/2φ(Θ†d),

where φδ(d) is defined with respect to the Hausdorff measure HN for HN -
almost everywhere d ∈ ΘRN .

B.4 Proof of Proposition 4

Proof. Given Assumptions 1-4, the OLS-based IRF estimators, δ̂LPOLS and δ̂V AR
OLS ,

are consistent. With identical estimands, both also have a common asymptotic
OLS bias dOLS = ΘσV AR

wu /(σV AR
w )2 = σLP

wu /(σ
LP
w )2. By absolute homogeneity

of norms, Proposition 3 implies that the difference in modal IV bias depends
only on the relative magnitude of s+R. If the LP and VAR models share the
same first-stage equation, then µ2

V AR = µ2
LP = µ2. So, s+R only differs because

of differences in R or ρ2. It is always true that ρ2LP ≤ ρ2V AR, since

ρ2LP = (σLP
wu )

′ (ΣLP
u

)−1
σLP
wu /(σ

LP
w )2,(B.39)

= (σV AR
wu )′Θ′ (ΣLP

u

)−1
ΘσV AR

wu /(σV AR
w )2,

= (σV AR
wu )′Θ′ (ΘΣV AR

u Θ′ + Ω
)−1

ΘσV AR
wu /(σV AR

w )2,

≤ (σV AR
wu )′Θ′(ΘΣV AR

u Θ′)†ΘσV AR
wu /(σV AR

w )2 = ρ2V AR

and Ω = Ω1

(
IH−1 ⊗ ΣV AR

wv

)
Ω′

1 is a positive semidefinite matrix.1 Part (i) fol-
lows since RV AR ≤ RLP and ρ2V AR ≥ ρ2LP , and the constant of proportionality
in the mode is strictly increasing in R and strictly decreasing in ρ2 (see Propo-
sition 2). For strictly positive values of ρ2V AR ≥ ρ2LP and µ2, if H ≥ K than
RV AR < RLP , implying part (ii). Since RV AR ≤ RLP , ρ2V AR > ρ2LP implies
part (iii) for any values of H and K.

1For example, when δ̂LP
IV and δ̂V AR

IV contain impulse responses over horizons 0, ...,H − 1, then

Ω1 =


0 0 . . . 0

[θ Θ]1 0 . . . 0
[θ Θ]2 [θ Θ]1 . . . 0

...
...

. . .
...

[θ Θ]H−1 [θ Θ]H−2 . . . [θ Θ]1

, where [θ Θ]i is the i-th row of [θ Θ].
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B.5 Proof of Proposition 5

The highest order polynomial term in the function g(t) is 1
N+1

t2, see (B.20).
As a result, lim

t→∞
g(t)/t2 = 1/(N + 1), and therefore

lim
ρ2→1

(1− ρ2)g

(
−(1− ρ2 + s)|µ|/

√
1− ρ2√

s2 + (1− ρ2)(1 + 2s)

)
(B.40)

= lim
ρ2→1

(1− ρ2)g

(
− |µ|√

1− ρ2

)
=

µ2

N + 1

Taking limits of (B.24) and setting N = R,(
1 + lim

ρ2→1
s

)/(
lim
ρ2→1

s

)2

· µ2

R + 1
= 1.(B.41)

Solving for the positive root corresponding to the major mode,

lim
ρ2→1

s+ =
1

2

µ2

R + 1
+

1

2

((
µ2

R + 1
+ 2

)2

− 4

) 1
2

.(B.42)

Substituting into lim
ρ2→1

B(ρ2, µ2) = 1/(1 + lim
ρ2→1

s+) yields

lim
ρ2→1

B(ρ2, µ2) =

1 +
1

2

µ2

R + 1
+

1

2

((
µ2

R + 1
+ 2

)2

− 4

) 1
2

−1

≤ 1(B.43)

Setting lim
ρ2→1

B(ρ2,m(τ)) = τ and solving for m(τ) yields m(τ) = (R+1) (1−τ)2

τ
.

We know that sup
ρ2

{B(ρ2, µ2)} ≥ lim
ρ2→1

B(ρ2, µ2), with equality when µ2 ≥ µ2.

Since B(ρ2, µ2) = |ρ|/(1 + s+R) is strictly decreasing in µ2 (Proposition 2), all
models with µ2 ≤ m(τ) must have B(ρ2, µ2) ≥ τ and, if µ2 ≥ µ2, all models
with µ2 > m(τ) must have B(ρ2, µ2) < τ .

B.6 Proof of Proposition 6

Proof. The result follows trivially from (16) since C(m(τ), α) ≥ C(µ2, α) for
all µ2 ≤ m(τ).
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B.7 Proof of Proposition 7

The existence and uniqueness of a continuous differentiable function mc(τ)

follow from the Implicit Function Theorem and the fact that the derivative of
B = |ρ̄/(1+s+R)| is strictly negative and bounded away from zero (Proposition
2). The remainder of the proof is analogous to that of Proposition 5.

B.8 Proof of Proposition 8

Proof. Since Σ̂wv
p→ Σwv (Assumption 4), by the Continuous Mapping Theo-

rem and (13), ˆ̄ρ2 → ρ̄2, and from Proposition 7,

m̂c(τ)
p→ mc(τ) , min{m̂c(τ),mc(τ)} p→ mc(τ).(B.44)

As in Proposition B.6, we have from F
d→ χ2

1(m
c(τ)) that,

sup
µ2≤mc(τ)

lim
T→∞

Prob (F > C (mc(τ), α)) = α.(B.45)

Now, consider

Prob (F > C(m̂c(τ), α)) ≤ Prob (F > min (C(m̂c(τ), α),mc(τ))) ,(B.46)
p→ Prob (F > C(mc(τ), α)) = α.

Since the critical value function C(µ2, α) is weakly increasing in µ2, we have

C(mc(τ), α) ≥ C(µ2, α) for all µ2 ≤ mc(τ).(B.47)

Thus,

lim
T→∞

Prob (F > C(mc(τ), α)) ≤ α for all µ2 ≤ mc(τ),(B.48)

and the statement in the Proposition follows.
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C Bootstrap Implementation and Simulation Evidence

This section outlines a parametric bootstrap implementation of the weak in-
strument test, and presents simulation evidence on the performance of the
baseline weak instrument test described in Section 4.2 in terms of size and
power. The procedure for obtaining the bootstrap critical value Cbs(α, τ) at
significance level α and tolerance level τ is as follows:

1. Regress the scaling (first-stage) variable xY
t on Xt−1 (a constant and

lagged controls) using OLS. Obtain the fitted values x̂Y
t and the residual

variance estimate σ̂2
Y .

2. Define µ2 = (R+1)(1−τ)2/τ , where R is the rank of the impulse response
(see Section 2.3). Compute

σ2
w =

σ̂2
Y

1 + µ2/T
, Π = σw

√
µ2/T .

3. For each bootstrap iteration b = 1, . . . , Nb:

(a) Draw residuals wb
t ∼ N (0, σ2

w) for t = 1, . . . , T , and draw instruments
Z̃b

t ∼ N (0, 1). Orthogonalize Z̃b
t with respect to Xt−1, standardize to

have unit sample covariance, and denote the result by Zb
t . Construct

xY,b
t = ΠZb

t + x̂Y
t + wb

t , t = 1, . . . , T.

(b) Regress xY,b
t on Zb

t on Xt−1. Record the F -statistic, F b, associated
with the OLS estimate of Π.

4. Compute the bootstrap critical value Cbs(α, τ) as the upper α-quantile
of the empirical distribution of {F b}Nb

b=1.

Table C.1 reports empirical rejection rates for nominal 5% tests of the null
hypothesis of a weak instrument with bias tolerance τ = 0.10 for a range of
DGPs. In each case, the test is based on the joint bias in the impulse response
over multiple horizons. We consider impulse responses from several DGPs
including an impulse response in a simple AR(1) model with persistence 0.90
and the other parameters such that ρ2 = 0.90; the inflation response to an
interest rate shock in a textbook New Keynesian model as in Section 1.1 and
Appendix A; and responses from several empirical DGPs calibrated to actual
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Table C.1: Empirical Size of Nominal 5% Tests for Various DGPs

SVAR-IV LP-IV

T small T large T small T large

bs asy asy bs asy asy
AR(1) Model 5.4 6.0 4.9 5.5 7.9 5.3
New Keynesian Model 5.3 5.7 5.1 5.3 6.8 4.9
MP: Gertler and Karadi (2015) 4.7 2.4 4.9 5.5 1.5 5.1
OIL: Montiel Olea et al. (2021) 4.8 2.0 5.1 4.9 0.5 4.5
UNC: Carriero et al. (2015) 5.3 1.4 4.5 5.0 0.2 4.5
TAX: Mertens and Montiel Olea (2018) 4.7 2.8 4.6 5.4 3.1 4.8

Note: Rejection rates of the joint weak instrument test with τ = 0.10 and α = 0.05 across
10,000 Monte Carlo samples under bootstrapped (bs; 5,000 samples) and asymptotic (asy)
critical values for the F -statistic. For the small samples, T = 250 for the AR(1) and NK
models. For the other DGPs, T equals the empirical sample sizes in the papers cited. For the
large sample simulations, T = 10, 000.

applications with U.S. time series in the literature. Specifically, we consider
the response of industrial production to a monetary policy shock as in Gertler
and Karadi (2015); the response of industrial production to an uncertainty
shock as in Carriero et al. (2015); the response of global economic activity to
an oil supply shock as in Montiel Olea et al. (2021); and the response of real
GDP to a marginal tax rate shock as in Mertens and Montiel Olea (2018).
For the AR(1) and New Keynesian models, we set the sample size to T = 250

and the horizon to H = 12 and H = 8 periods, respectively. The monetary
policy, uncertainty and oil shock applications use monthly samples of the same
size as in the actual data (around 400-500 months), and we consider a four-
year horizon, H = 48. The tax shock application uses an annual postwar
sample of 65 years, and we consider a response horizon of H = 6 years. These
values for T and H are representative for typical macro applications with U.S.
quarterly, monthly, or annual data, and the corresponding results are labeled
under the header “T small”. We also consider results in simulations for much
larger sample sizes (“T large”) to verify the asymptotic validity of our testing
procedures.

The rejection rates in Table C.1 are for 10,000 Monte Carlo samples. In all
models, the concentration parameter µ2 is set such that the true (joint) worst-
case bias in the DGP is exactly equal to the tolerance level τ = 0.10. For small
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T , the table reports rejection rates based on bootstrapped and asymptotic
critical values, the latter coming from the non-central χ2

1 distribution. For
T large, only those for the asymptotic critical values are shown. Finally,
the tests are conducted with both the SVAR-IV and LP-IV impulse response
estimators.

Consistent with the theory, Table C.1 shows that the empirical rejection
rates in large samples are very close to the 5% nominal size of the test. In
small samples, some size distortions inevitably emerge because the (asymp-
totic) approximation of the first-stage and reduced form OLS estimates as
jointly Gaussian becomes less accurate, and because of the greater influence
of estimation error in the other coefficients of the models (both the VARs and
LPs include lags of various endogenous variables as additional regressors). In
realistically sized samples, the performance of the test under the asymptotic
χ2
1 critical values nevertheless remains reasonably good.

The first and fourth columns in Table C.1 show that using the bootstrap
procedure described in Appendix C instead of the asymptotic critical value
results in meaningful improvements in performance, with rejection rates that
are much closer to the nominal size overall. Based on these improvements in
samples that are more typical for actual empirical applications, we recommend
using the bootstrap to obtain the critical values in practice.

Figure C.4 evaluates the power of the weak instrument test for α = 0.05

and τ = 0.10 across three DGPs. Each panel plots empirical rejection rates as
a function of the bias criterion for ρ2 → 1, across a grid for the concentration
parameter µ2 (full lines). For reference, the figure panels also plot rejection
rates as a function of the actual modal bias based on the true values of the
structural parameters in the DGP (dashed lines). Both are shown for SVAR-IV
(in red) and LP-IV (in black). Each gridpoint reflects rejection rates in 10,000
Monte Carlo samples based on boostrapped critical values of the F -statistic
across 5,000 replications.
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Figure C.4: Power Curves In Simulations

AR(1) Model NK Model Gertler and Karadi (2015)

Notes: Horizontal lines marks α = 0.05, vertical lines mark τ = 0.10. Rejection rates across
a grid for µ2. Each gridpoint shows the rejection rate across 10,000 Monte Carlo samples
based on bootstrapped critical values of the F -statistic, with 5,000 bootstrap samples for
each Monte Carlo sample.
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